- -

A DNA-centered explanation of the DNA polymerase translocation mechanism

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

A DNA-centered explanation of the DNA polymerase translocation mechanism

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Arias-Gonzalez, J. R. es_ES
dc.date.accessioned 2020-10-23T03:31:18Z
dc.date.available 2020-10-23T03:31:18Z
dc.date.issued 2017-08-08 es_ES
dc.identifier.issn 2045-2322 es_ES
dc.identifier.uri http://hdl.handle.net/10251/153037
dc.description.abstract [EN] DNA polymerase couples chemical energy to translocation along a DNA template with a specific directionality while it replicates genetic information. According to single-molecule manipulation experiments, the polymerase-DNA complex can work against loads greater than 50 pN. It is not known, on the one hand, how chemical energy is transduced into mechanical motion, accounting for such large forces on sub-nanometer steps, and, on the other hand, how energy consumption in fidelity maintenance integrates in this non-equilibrium cycle. Here, we propose a translocation mechanism that points to the flexibility of the DNA, including its overstretching transition, as the principal responsible for the DNA polymerase ratcheting motion. By using thermodynamic analyses, we then find that an external load hardly affects the fidelity of the copying process and, consequently, that translocation and fidelity maintenance are loosely coupled processes. The proposed translocation mechanism is compatible with single-molecule experiments, structural data and stereochemical details of the DNA- protein complex that is formed during replication, and may be extended to RNA transcription. es_ES
dc.description.sponsorship The author thanks B. Ibarra and F.J. Cao for fruitful discussion and H.Rodriguez-Rodriguez for critical reading of the manuscript. This work was supported the Spanish Ministry of Economy and Competitiveness (grant number MAT2015-71806-R). es_ES
dc.language Inglés es_ES
dc.publisher Nature Publishing Group es_ES
dc.relation.ispartof Scientific Reports es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject DNA es_ES
dc.subject Polymerase es_ES
dc.subject Single molecule es_ES
dc.subject Mechano-chemistry es_ES
dc.subject.classification FISICA APLICADA es_ES
dc.title A DNA-centered explanation of the DNA polymerase translocation mechanism es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1038/s41598-017-08038-2 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//MAT2015-71806-R/ES/INFLUENCIA DEL CALOR EMITIDO POR NANOPARTICULAS MAGNETICAS SOBRE BIOMOLECULAS DETERMINADO MEDIANTE PINZAS OPTICAS/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada es_ES
dc.description.bibliographicCitation Arias-Gonzalez, JR. (2017). A DNA-centered explanation of the DNA polymerase translocation mechanism. Scientific Reports. 7:1-8. https://doi.org/10.1038/s41598-017-08038-2 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1038/s41598-017-08038-2 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 8 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 7 es_ES
dc.identifier.pmid 28790383 es_ES
dc.identifier.pmcid PMC5548866 es_ES
dc.relation.pasarela S\407986 es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Bustamante, C., Cheng, C. & Mejia, Y. X. Revisiting the central dogma one molecule at a time. Cell 144, 480–497 (2011). es_ES
dc.description.references van Oijen, A. M. & Loparo, J. J. Single-molecule studies of the replisome. Annu. Rev. Biophys. 39, 429–448 (2010). es_ES
dc.description.references Wang, H.-Y., Elston, T., Mogilner, A. & Oster, G. Force generation in RNA polymerase. Biophys. J. 74, 1186–1202 (1998). es_ES
dc.description.references Julicher, F. & Bruinsma, R. Motion of RNA polymerase along DNA: A stochastic model. Biophys. J. 74, 1169–1185 (1998). es_ES
dc.description.references Voliotis, M., Cohen, N., Molina-París, C. & Liverpool, T. B. Fluctuations, pauses, and backtracking in DNA transcription. Biophys. J. 94, 334–348 (2008). es_ES
dc.description.references Arias-Gonzalez, J. R. Entropy involved in fidelity of DNA replication. PLoS One 7, e42272 (2012). es_ES
dc.description.references Morin, J. A. et al. Active DNA unwinding dynamics during processive DNA replication. Proc. Natl. Acad. Sci. USA 109, 8115–8120 (2012). es_ES
dc.description.references Manosas, M. et al. Mechanism of strand displacement synthesis by DNA replicative polymerases. Nucleic Acids Res. 40, 6174–6186 (2012). es_ES
dc.description.references Yasuda, R., Noji, H., Kinosita, K. Jr. & Yoshida, M. f 1-atpase is a highly efficient molecular motor that rotates wit h discrete 120° steps. Cell 93, 1117–1124 (1998). es_ES
dc.description.references Oster, G. & Wang, H. How protein motors convert chemical energy into mechanical work, 1 edn. (ed. Schliwa, M.) (Wiley-VCH, 2003). es_ES
dc.description.references Chemla, Y. R. & Smith, D. E. Single-molecule studies of viral dna packaging. Adv. Exp. Med. Biol. 726, 549–584 (2012). es_ES
dc.description.references Arias-Gonzalez, J. R. Optical tweezers to study viruses. Subcell. Biochem. 68, 273–304 (2013). es_ES
dc.description.references Visscher, K., Schnitzer, M. J. & Block, S. M. Single kinesin molecules studied with a molecular force clamp. Nature 400, 184–189 (1999). es_ES
dc.description.references Goel, A., Frank-Kamenetskii, M. D., Ellenberger, T. & Herschbach, D. Tuning DNA “strings”: Modulating the rate of DNA replication with mechanical tension. Proc. Natl. Acad. Sci. USA 98, 8485–8489 (2001). es_ES
dc.description.references Arias-Gonzalez, J. R. Single-molecule portrait of DNA and RNA double helices. Integr. Biol. 6, 904–925 (2014). es_ES
dc.description.references Herrero-Galan, E. et al. Mechanical identities of RNA and DNA double helices unveiled at the single-molecule level. J. Am. Chem. Soc. 135, 122–131 (2013). es_ES
dc.description.references Saenger, W. Principles of nucleic acid structure, 2 edn. (Springer-Verlag, New York, 1984). es_ES
dc.description.references Calladine, C. R., Drew, H., Luisi, B. & Travers, A. Understanding DNA. The molecule and how it works, 3 edn. (Elsevier, Academic Press, 2004). es_ES
dc.description.references Hormeno, S. et al. Mechanical properties of high-g·c content DNA with a-type base-stacking. Biophys. J. 100, 1996–2005 (2011). es_ES
dc.description.references Berman, A. J. et al. Structures of phi29 dna polymerase complexed with substrate: the mechanism of translocation in b-family polymerases. EMBO J. 26, 3494–3505 (2007). es_ES
dc.description.references Hogg, M., Wallace, S. S. & Doublié, S. Crystallographic snapshots of a replicative dna polymerase encountering an abasic site. EMBO J. 23, 1483–1493 (2004). es_ES
dc.description.references Franklin, M. C., Wang, J. & Steitz, T. A. Structure of the replicating complex of a pol alpha family dna polymerase. Cell 105, 657–667 (2001). es_ES
dc.description.references Doublié, S., Tabor, S., Long, A. M., Richardson, C. C. & Ellenberger, T. Crystal structure of a bacteriophage t7 dna replication complex at 2.2 a resolution. Nature 391, 251–258 (1998). es_ES
dc.description.references Blasco, M. A., Lázaro, J. M., Bernad, A., Blanco, L. & Salas, M. Phi29 dna polymerase active site. J. Biol. Chem. 267, 19427–19434 (1992). es_ES
dc.description.references Kunkel, T. A. & Bebenek, K. DNA replication fidelity. Annu. Rev. Biochem. 69, 497–529 (2000). es_ES
dc.description.references Kunkel, T. A. DNA replication fidelity. J. Biol. Chem. 279, 16895–16898 (2004). es_ES
dc.description.references Santoso, Y. et al. Conformational transitions in DNA polymerase i revealed by single-molecule FRET. Proc. Natl. Acad. Sci. USA 107, 715–720 (2010). es_ES
dc.description.references Morin, J. A. et al. Mechano-chemical kinetics of dna replication: identification of the translocation step of a replicative dna polymerase. Nucleic Acids Res. 43, 3643–3652 (2015). es_ES
dc.description.references Hormeno, S., Ibarra, B., Valpuesta, J. M., Carrascosa, J. L. & Arias-Gonzalez, J. R. Mechanical stability of low humidity single dna molecules. Biopolymers 97, 199–208 (2012). es_ES
dc.description.references Hormeno, S. et al. Condensation prevails over b-a transition in the structure of DNA at low humidity. Biophys. J. 100, 2006–2015 (2011). es_ES
dc.description.references SantaLucia, J. & Hicks, D. The thermodynamics of DNA structural motifs. Annu. Rev. Biophys. Biomol. Struct. 33, 415–440 (2004). es_ES
dc.description.references Friedberg, E. C. & Fischhaber, P. L. DNA replication fidelity. eLS 69, 497–529 (2005). es_ES
dc.description.references Arias-Gonzalez, J. R. Information management in DNA replication modeled by directional, stochastic chains with memory. J. Chem. Phys. 145, 185103 (2016). es_ES
dc.description.references Petruska, J. et al. Comparison between DNA melting thermodynamics and DNA polymerase fidelity. Proc Natl Acad Sci USA 85, 6252–6256 (1988). es_ES
dc.description.references Shu, Y.-G., Song, Y.-S., Ou-Yang, Z.-C. & Li, M. A general theory of kinetics and thermodynamics of steady-state copolymerization. J. Phys.: Condens. Matter 27, 235105 (2015). es_ES
dc.description.references Gaspard, P. Kinetics and thermodynamics of exonuclease-deficient DNA polymerases. Phys. Rev. E 93, 042419 (2016). es_ES
dc.description.references Gaspard, P. Kinetics and thermodynamics of DNA polymerases with exonuclease proofreading. Phys. Rev. E 93, 042420 (2016). es_ES
dc.description.references Song, Y.-S., Shu, Y.-G., Zhou, X., Ou-Yang, Z.-C. & Li, M. Proofreading of DNA polymerase: a new kinetic model with higher-order terminal effects. J. Phys.: Condens. Matter 29, 025101 (2017). es_ES
dc.description.references Erie, D. A., Yager, T. D. & von Hippel, P. H. The single-nucleotide addition cycle in transcription: a biophysical and biochemical perspective. Annu. Rev. Biophys. Biomol. Struct. 21, 379–415 (1992). es_ES
dc.description.references Odijk, T. Stiff chains and filaments under tension. Macromolecules 28, 7016–7018 (1995). es_ES
dc.description.references Wang, M. D., Yin, H., Landick, R., Gelles, J. & Block, S. M. Stretching dna with optical tweezers. Biophys. J. 72, 1335–1346 (1997). es_ES
dc.description.references Saturno, J., Blanco, L., Salas, M. & Esteban, J. A. A novel kinetic analysis to calculate nucleotide affinity of proofreading DNA polymerases. application to phi 29 DNA polymerase fidelity mutants. J. Biol. Chem. 270, 31235–31243 (1995). es_ES
dc.description.references Esteban, J. A., Salas, M. & Blanco, L. Fidelity of ϕ29 dna polymerase. J. Biol. Chem. 268, 2713–2726 (1993). es_ES
dc.description.references Korzheva, N. & Mustaev, A. RNA and DNA Polymerases, 1 edn. (ed. Schliwa, M.) (Wiley-VCH, 2003). es_ES
dc.description.references Ibarra, B. et al. Proofreading dynamics of a processive DNA polymerase. EMBO J. 28, 2794–2802 (2009). es_ES
dc.description.references Nong, E. X., DeVience, S. J. & Herschbach, D. Minimalist model for force-dependent dna replication. Biophys. J. 102, 810–818 (2012). es_ES
dc.description.references Echols, H. & Goodman, M. F. Fidelity mechanisms in DNA replication. Annu. Rev. Biochem. 60, 477–511 (1991). es_ES
dc.description.references Roberts, J. D. & Kunkel, T. A. Fidelity of dna replication. Cold Spring Harbor Laboratory Press 31, 217–247 (1996). es_ES
dc.description.references Johnson, S. J. & Beese, L. S. Structures of mismatch replication errors observed in a dna polymerase. Cell 116, 803–816 (2004). es_ES
dc.description.references Cover, T. M. & Thomas, J. A. Elements of Information Theory (John Wiley & Sons, 1991). es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem