dc.contributor.author |
Arias-Gonzalez, J. R.
|
es_ES |
dc.date.accessioned |
2020-10-24T03:30:47Z |
|
dc.date.available |
2020-10-24T03:30:47Z |
|
dc.date.issued |
2017-11-28 |
es_ES |
dc.identifier.issn |
0021-9606 |
es_ES |
dc.identifier.uri |
http://hdl.handle.net/10251/153115 |
|
dc.description |
This article may be downloaded for personal use only. Any other use requires prior permission of the author and AIP Publishing. This article appeared in Arias-Gonzalez, J. Ricardo. 2017. Thermodynamic Framework for Information in Nanoscale Systems with Memory. The Journal of Chemical Physics 147 (20). AIP Publishing: 205101. doi:10.1063/1.5004793 and may be found at https://doi.org/10.1063/1.5004793." |
es_ES |
dc.description.abstract |
[EN] Information is represented by linear strings of symbols with memory that carry errors as a result of their stochastic nature. Proofreading and edition are assumed to improve certainty although such processes may not be effective. Here, we develop a thermodynamic theory for material chains made up of nanoscopic subunits with symbolic meaning in the presence of memory. This framework is based on the characterization of single sequences of symbols constructed under a protocol and is used to derive the behavior of ensembles of sequences similarly constructed. We then analyze the role of proofreading and edition in the presence of memory finding conditions to make revision an effective process, namely, to decrease the entropy of the chain. Finally, we apply our formalism to DNA replication and RNA transcription finding that Watson and Crick hybridization energies with which nucleotides are branched to the template strand during the copying process are optimal to regulate the fidelity in proofreading. These results are important in applications of information theory to a variety of solid-state physical systems and other biomolecular processes. Published by AIP Publishing. |
es_ES |
dc.description.sponsorship |
This work was supported by the Spanish Ministry of Economy and Competitiveness (Grant No. MAT2015-71806-R). |
es_ES |
dc.language |
Inglés |
es_ES |
dc.publisher |
American Institute of Physics |
es_ES |
dc.relation.ispartof |
The Journal of Chemical Physics |
es_ES |
dc.rights |
Reserva de todos los derechos |
es_ES |
dc.subject |
Nanoscale |
es_ES |
dc.subject |
Information Theory |
es_ES |
dc.subject |
Thermodynamics |
es_ES |
dc.subject |
DNA replication |
es_ES |
dc.subject |
DNA transcription |
es_ES |
dc.subject |
Memory |
es_ES |
dc.subject.classification |
FISICA APLICADA |
es_ES |
dc.title |
Thermodynamic framework for information in nanoscale systems with memory |
es_ES |
dc.type |
Artículo |
es_ES |
dc.identifier.doi |
10.1063/1.5004793 |
es_ES |
dc.relation.projectID |
info:eu-repo/grantAgreement/MINECO//MAT2015-71806-R/ES/INFLUENCIA DEL CALOR EMITIDO POR NANOPARTICULAS MAGNETICAS SOBRE BIOMOLECULAS DETERMINADO MEDIANTE PINZAS OPTICAS/ |
es_ES |
dc.rights.accessRights |
Abierto |
es_ES |
dc.contributor.affiliation |
Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada |
es_ES |
dc.description.bibliographicCitation |
Arias-Gonzalez, JR. (2017). Thermodynamic framework for information in nanoscale systems with memory. The Journal of Chemical Physics. 147(20):1-10. https://doi.org/10.1063/1.5004793 |
es_ES |
dc.description.accrualMethod |
S |
es_ES |
dc.relation.publisherversion |
https://doi.org/10.1063/1.5004793 |
es_ES |
dc.description.upvformatpinicio |
1 |
es_ES |
dc.description.upvformatpfin |
10 |
es_ES |
dc.type.version |
info:eu-repo/semantics/publishedVersion |
es_ES |
dc.description.volume |
147 |
es_ES |
dc.description.issue |
20 |
es_ES |
dc.identifier.pmid |
29195281 |
es_ES |
dc.relation.pasarela |
S\407991 |
es_ES |
dc.contributor.funder |
Ministerio de Economía y Competitividad |
es_ES |
dc.description.references |
Bustamante, C., Cheng, W., & Mejia, Y. X. (2011). Revisiting the Central Dogma One Molecule at a Time. Cell, 144(4), 480-497. doi:10.1016/j.cell.2011.01.033 |
es_ES |
dc.description.references |
Bennett, C. H. (1982). The thermodynamics of computation—a review. International Journal of Theoretical Physics, 21(12), 905-940. doi:10.1007/bf02084158 |
es_ES |
dc.description.references |
Shannon, C. E. (1948). A Mathematical Theory of Communication. Bell System Technical Journal, 27(3), 379-423. doi:10.1002/j.1538-7305.1948.tb01338.x |
es_ES |
dc.description.references |
Cover, T. M., & Thomas, J. A. (1991). Elements of Information Theory. Wiley Series in Telecommunications. doi:10.1002/0471200611 |
es_ES |
dc.description.references |
Bernardi, F., & Ninio, J. (1979). The accuracy of DNA replication. Biochimie, 60(10), 1083-1095. doi:10.1016/s0300-9084(79)80343-0 |
es_ES |
dc.description.references |
Hopfield, J. J. (1974). Kinetic Proofreading: A New Mechanism for Reducing Errors in Biosynthetic Processes Requiring High Specificity. Proceedings of the National Academy of Sciences, 71(10), 4135-4139. doi:10.1073/pnas.71.10.4135 |
es_ES |
dc.description.references |
Ninio, J. (1975). Kinetic amplification of enzyme discrimination. Biochimie, 57(5), 587-595. doi:10.1016/s0300-9084(75)80139-8 |
es_ES |
dc.description.references |
Landauer, R. (1991). Information is Physical. Physics Today, 44(5), 23-29. doi:10.1063/1.881299 |
es_ES |
dc.description.references |
Arias-Gonzalez, J. R. (2012). Entropy Involved in Fidelity of DNA Replication. PLoS ONE, 7(8), e42272. doi:10.1371/journal.pone.0042272 |
es_ES |
dc.description.references |
Arias-Gonzalez, J. R. (2017). A DNA-centered explanation of the DNA polymerase translocation mechanism. Scientific Reports, 7(1). doi:10.1038/s41598-017-08038-2 |
es_ES |
dc.description.references |
Church, G. M., Gao, Y., & Kosuri, S. (2012). Next-Generation Digital Information Storage in DNA. Science, 337(6102), 1628-1628. doi:10.1126/science.1226355 |
es_ES |
dc.description.references |
Goldman, N., Bertone, P., Chen, S., Dessimoz, C., LeProust, E. M., Sipos, B., & Birney, E. (2013). Towards practical, high-capacity, low-maintenance information storage in synthesized DNA. Nature, 494(7435), 77-80. doi:10.1038/nature11875 |
es_ES |
dc.description.references |
Breuer, H.-P., Laine, E.-M., Piilo, J., & Vacchini, B. (2016). Colloquium: Non-Markovian dynamics in open quantum systems. Reviews of Modern Physics, 88(2). doi:10.1103/revmodphys.88.021002 |
es_ES |
dc.description.references |
Arias-Gonzalez, J. R. (2016). Information management in DNA replication modeled by directional, stochastic chains with memory. The Journal of Chemical Physics, 145(18), 185103. doi:10.1063/1.4967335 |
es_ES |
dc.description.references |
Bustamante, C., Liphardt, J., & Ritort, F. (2005). The Nonequilibrium Thermodynamics of Small Systems. Physics Today, 58(7), 43-48. doi:10.1063/1.2012462 |
es_ES |
dc.description.references |
SantaLucia, J., & Hicks, D. (2004). The Thermodynamics of DNA Structural Motifs. Annual Review of Biophysics and Biomolecular Structure, 33(1), 415-440. doi:10.1146/annurev.biophys.32.110601.141800 |
es_ES |
dc.description.references |
Andrieux, D., & Gaspard, P. (2008). Nonequilibrium generation of information in copolymerization processes. Proceedings of the National Academy of Sciences, 105(28), 9516-9521. doi:10.1073/pnas.0802049105 |
es_ES |
dc.description.references |
Arias-Gonzalez, J. R. (2014). Single-molecule portrait of DNA and RNA double helices. Integr. Biol., 6(10), 904-925. doi:10.1039/c4ib00163j |
es_ES |
dc.description.references |
Erie, D. A., Yager, T. D., & von Hippel, P. H. (1992). The Single-Nucleotide Addition Cycle in Transcription: a Biophysical and Biochemical Perspective. Annual Review of Biophysics and Biomolecular Structure, 21(1), 379-415. doi:10.1146/annurev.bb.21.060192.002115 |
es_ES |
dc.description.references |
Brovarets’, O. O., & Hovorun, D. M. (2015). New structural hypostases of the A·T and G·C Watson–Crick DNA base pairs caused by their mutagenic tautomerisation in a wobble manner: a QM/QTAIM prediction. RSC Advances, 5(121), 99594-99605. doi:10.1039/c5ra19971a |
es_ES |
dc.description.references |
Brovarets’, O. O., & Hovorun, D. M. (2015). Novel physico-chemical mechanism of the mutagenic tautomerisation of the Watson–Crick-like A·G and C·T DNA base mispairs: a quantum-chemical picture. RSC Advances, 5(81), 66318-66333. doi:10.1039/c5ra11773a |
es_ES |
dc.description.references |
Ibarra, B., Chemla, Y. R., Plyasunov, S., Smith, S. B., Lázaro, J. M., Salas, M., & Bustamante, C. (2009). Proofreading dynamics of a processive DNA polymerase. The EMBO Journal, 28(18), 2794-2802. doi:10.1038/emboj.2009.219 |
es_ES |
dc.description.references |
Sydow, J. F., & Cramer, P. (2009). RNA polymerase fidelity and transcriptional proofreading. Current Opinion in Structural Biology, 19(6), 732-739. doi:10.1016/j.sbi.2009.10.009 |
es_ES |
dc.description.references |
Kunkel, T. A. (2004). DNA Replication Fidelity. Journal of Biological Chemistry, 279(17), 16895-16898. doi:10.1074/jbc.r400006200 |
es_ES |