Mostrar el registro sencillo del ítem
dc.contributor.author | Cambra-Baseca, Carlos | es_ES |
dc.contributor.author | Sendra, Sandra | es_ES |
dc.contributor.author | Lloret, Jaime | es_ES |
dc.contributor.author | Tomás Gironés, Jesús | es_ES |
dc.date.accessioned | 2020-10-24T03:30:52Z | |
dc.date.available | 2020-10-24T03:30:52Z | |
dc.date.issued | 2019-04-27 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/153117 | |
dc.description.abstract | [EN] New technologies have the potential to transform agriculture and to reduce environmental impact through a green revolution. Internet of Things (IoT)-based application development platforms have the potential to run farm management tools capable of monitoring real-time events when integrated into interactive innovation models for fertirrigation. Their capabilities must extend to flexible reconfiguration of programmed actions. IoT platforms require complex smart decision-making systems based on data-analysis and data mining of big data sets. In this paper, the advantages are demonstrated of a powerful tool that applies real-time decisions from data such as variable rate irrigation, and selected parameters from field and weather conditions. The field parameters, the index vegetation (estimated using aerial images), and the irrigation events, such as flow level, pressure level, and wind speed, are periodically sampled. Data is processed in a decision-making system based on learning prediction rules in conjunction with the Drools rule engine. The multimedia platform can be remotely controlled, and offers a smart farming open data network with shared restriction levels for information exchange oriented to farmers, the fertilizer provider, and agricultural technicians that should provide the farmer with added value in the form of better decision making or more efficient exploitation operations and management. | es_ES |
dc.description.sponsorship | This paper has been partially supported by the European Union through the ERANETMED (Euromediterranean Cooperation through ERANET joint activities and beyond) project ERANETMED3-227 SMARTWATIR and by the "Ministerio de Ciencia, Innovacion y Universidades" through the "Ayudas para la adquisicion de equipamiento cientifico-tecnico, Subprograma estatal de infraestructuras de investigacion y equipamiento cientifico-tecnico (plan Estatal i+d+i 2017-2020)" (project EQC2018-004988-P). | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | MDPI | es_ES |
dc.relation.ispartof | Agronomy | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Smart farming | es_ES |
dc.subject | IoT farming | es_ES |
dc.subject | Agriculture smart system | es_ES |
dc.subject | WSN agricultura | es_ES |
dc.subject | Digital farming | es_ES |
dc.subject.classification | INGENIERIA TELEMATICA | es_ES |
dc.title | A Smart Decision System for Digital Farming | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.3390/agronomy9050216 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/EC//ERANETMED3-227 SMARTWATIR/EU/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MCIU//EQC2018-004988-P/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions | es_ES |
dc.description.bibliographicCitation | Cambra-Baseca, C.; Sendra, S.; Lloret, J.; Tomás Gironés, J. (2019). A Smart Decision System for Digital Farming. Agronomy. 9(5):1-19. https://doi.org/10.3390/agronomy9050216 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.3390/agronomy9050216 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 19 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 9 | es_ES |
dc.description.issue | 5 | es_ES |
dc.identifier.eissn | 2073-4395 | es_ES |
dc.relation.pasarela | S\410931 | es_ES |
dc.contributor.funder | European Commission | es_ES |
dc.contributor.funder | Ministerio de Ciencia, Innovación y Universidades | es_ES |
dc.description.references | Atzori, L., Iera, A., & Morabito, G. (2010). The Internet of Things: A survey. Computer Networks, 54(15), 2787-2805. doi:10.1016/j.comnet.2010.05.010 | es_ES |
dc.description.references | Chen, M., Mao, S., & Liu, Y. (2014). Big Data: A Survey. Mobile Networks and Applications, 19(2), 171-209. doi:10.1007/s11036-013-0489-0 | es_ES |
dc.description.references | De Mauro, A., Greco, M., & Grimaldi, M. (2016). A formal definition of Big Data based on its essential features. Library Review, 65(3), 122-135. doi:10.1108/lr-06-2015-0061 | es_ES |
dc.description.references | Haghverdi, A., Leib, B. G., Washington-Allen, R. A., Ayers, P. D., & Buschermohle, M. J. (2015). Perspectives on delineating management zones for variable rate irrigation. Computers and Electronics in Agriculture, 117, 154-167. doi:10.1016/j.compag.2015.06.019 | es_ES |
dc.description.references | Vazquez, J. I., Ruiz-de-Garibay, J., Eguiluz, X., Doamo, I., Renteria, S., & Ayerbe, A. (2010). Communication architectures and experiences for web-connected physical Smart objects. 2010 8th IEEE International Conference on Pervasive Computing and Communications Workshops (PERCOM Workshops). doi:10.1109/percomw.2010.5470521 | es_ES |
dc.description.references | Misra, S., Barthwal, R., & Obaidat, M. S. (2012). Community detection in an integrated Internet of Things and social network architecture. 2012 IEEE Global Communications Conference (GLOBECOM). doi:10.1109/glocom.2012.6503350 | es_ES |
dc.description.references | Atzori, L., Iera, A., & Morabito, G. (2014). From «smart objects» to «social objects»: The next evolutionary step of the internet of things. IEEE Communications Magazine, 52(1), 97-105. doi:10.1109/mcom.2014.6710070 | es_ES |
dc.description.references | Agrivi App http://www.agrivi.com/en/re | es_ES |
dc.description.references | Apollo Project http://apollo-h2020.eu/ | es_ES |
dc.description.references | Cambra, C., Sendra, S., Lloret, J., & Lacuesta, R. (2018). Smart System for Bicarbonate Control in Irrigation for Hydroponic Precision Farming. Sensors, 18(5), 1333. doi:10.3390/s18051333 | es_ES |
dc.description.references | Ortiz, A. M., Hussein, D., Park, S., Han, S. N., & Crespi, N. (2014). The Cluster Between Internet of Things and Social Networks: Review and Research Challenges. IEEE Internet of Things Journal, 1(3), 206-215. doi:10.1109/jiot.2014.2318835 | es_ES |
dc.description.references | Ji, Z., Ganchev, I., O’Droma, M., Zhao, L., & Zhang, X. (2014). A Cloud-Based Car Parking Middleware for IoT-Based Smart Cities: Design and Implementation. Sensors, 14(12), 22372-22393. doi:10.3390/s141222372 | es_ES |
dc.description.references | Ning, H., & Wang, Z. (2011). Future Internet of Things Architecture: Like Mankind Neural System or Social Organization Framework? IEEE Communications Letters, 15(4), 461-463. doi:10.1109/lcomm.2011.022411.110120 | es_ES |