Mostrar el registro sencillo del ítem
dc.contributor.author | Castelblanque, L | es_ES |
dc.contributor.author | BALAGUER ZAMORA, BEGOÑA | es_ES |
dc.contributor.author | Marti, C. | es_ES |
dc.contributor.author | Rodríguez-Blasco, Juan José | es_ES |
dc.contributor.author | Orozco, M. | es_ES |
dc.contributor.author | Vera Vera, Pablo | es_ES |
dc.date.accessioned | 2020-10-27T04:31:47Z | |
dc.date.available | 2020-10-27T04:31:47Z | |
dc.date.issued | 2017 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/153218 | |
dc.description | "This is an Accepted Manuscript of an article published by Taylor & Francis inPlant Signaling and Behaviour on 2017, available online: https://www.tandfonline.com/doi/full/10.1080/15592324.2017.1300743" | es_ES |
dc.description.abstract | [EN] In the latex-bearing plants, the laticiferous system is the tubing structure that contains the latex and is constituted of living cells (laticifers). While laticifers are present only in a small percentage of the flowering plant species, they represent a type of specialized tissue within the plant where a myriad of metabolites are synthesized, some of them of considerable commercial importance. In this mini-review we synopsize the present knowledge about laticifer cells and discuss about their particular features as well as some evolutionary and ecophysiological cues and the potential exploitation of the knowledge generated around this peculiar type of plant cell. We illustrate some of these questions with the experience in Euphorbia lathyris laticifers and latex. | es_ES |
dc.description.sponsorship | This work was supported by the Spanish MINECO (BFU2015-68199-R to P.V.) and Generalitat Valenciana (Prometeo 2014/024 to P.V.) | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Landes Bioscience | es_ES |
dc.relation.ispartof | Plant Signaling and Behaviour (Online) | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Biofuel | es_ES |
dc.subject | Hydrocarbons | es_ES |
dc.subject | Latex | es_ES |
dc.subject | Laticifer cells | es_ES |
dc.subject | Plant defense | es_ES |
dc.subject.classification | BIOQUIMICA Y BIOLOGIA MOLECULAR | es_ES |
dc.title | Multiple facets of laticifer cells | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1080/15592324.2017.1300743 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//BFU2015-68199-R /ES/SOBRE LOS MECANISMOS DE SUSCEPTIBILIDAD A PATOGENOS EN ARABIDOPSIS/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//PROMETEO%2F2014%2F024/ES/Potencial biotecnológico de las aproximaciones de genética química en plantas y su impacto en la activación de mecanismos de resistencia a patógenos/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes | es_ES |
dc.description.bibliographicCitation | Castelblanque, L.; Balaguer Zamora, B.; Marti, C.; Rodríguez-Blasco, JJ.; Orozco, M.; Vera Vera, P. (2017). Multiple facets of laticifer cells. Plant Signaling and Behaviour (Online). 12(7):1-5. https://doi.org/10.1080/15592324.2017.1300743 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1080/15592324.2017.1300743 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 5 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 12 | es_ES |
dc.description.issue | 7 | es_ES |
dc.identifier.eissn | 1559-2324 | es_ES |
dc.identifier.pmid | 28718699 | es_ES |
dc.identifier.pmcid | PMC5586393 | es_ES |
dc.relation.pasarela | S\357270 | es_ES |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.description.references | Lewinsohn, T. M. (1991). The geographical distribution of plant latex. Chemoecology, 2(1), 64-68. doi:10.1007/bf01240668 | es_ES |
dc.description.references | HAGEL, J., YEUNG, E., & FACCHINI, P. (2008). Got milk? The secret life of laticifers. Trends in Plant Science, 13(12), 631-639. doi:10.1016/j.tplants.2008.09.005 | es_ES |
dc.description.references | Lange, B. M. (2015). The Evolution of Plant Secretory Structures and Emergence of Terpenoid Chemical Diversity. Annual Review of Plant Biology, 66(1), 139-159. doi:10.1146/annurev-arplant-043014-114639 | es_ES |
dc.description.references | Lev-Yadun, S. (2001). Intrusive growth - the plant analog of dendrite and axon growth in animals. New Phytologist, 150(3), 508-512. doi:10.1046/j.1469-8137.2001.00143.x | es_ES |
dc.description.references | Mahlberg, P. G. (1993). Laticifers: An historical perspective. The Botanical Review, 59(1), 1-23. doi:10.1007/bf02856611 | es_ES |
dc.description.references | Serpe, M., Muir, A., & Driouich, A. (2002). Immunolocalization of β- D -glucans, pectins, and arabinogalactan-proteins during intrusive growth and elongation of nonarticulated laticifers in Asclepias speciosa Torr. Planta, 215(3), 357-370. doi:10.1007/s00425-002-0756-y | es_ES |
dc.description.references | Konno, K. (2011). Plant latex and other exudates as plant defense systems: Roles of various defense chemicals and proteins contained therein. Phytochemistry, 72(13), 1510-1530. doi:10.1016/j.phytochem.2011.02.016 | es_ES |
dc.description.references | Castelblanque, L., Balaguer, B., Marti, C., Rodriguez, J. J., Orozco, M., & Vera, P. (2016). Novel Insights into the Organization of Laticifer Cells: A Cell Comprising a Unified Whole System. Plant Physiology, pp.00954.2016. doi:10.1104/pp.16.00954 | es_ES |
dc.description.references | Biesboer, D. D., & Mahlberg, P. G. (1978). Accumulation of non-utilizable starch in laticifers of Euphorbia heterophylla and E. myrsinites. Planta, 143(1), 5-10. doi:10.1007/bf00389045 | es_ES |
dc.description.references | Nissen, S. J., & Foley, M. E. (1986). No Latex Starch Utilization in Euphorbia esula L. Plant Physiology, 81(2), 696-698. doi:10.1104/pp.81.2.696 | es_ES |
dc.description.references | Xia, Z., Xu, H., Zhai, J., Li, D., Luo, H., He, C., & Huang, X. (2011). RNA-Seq analysis and de novo transcriptome assembly of Hevea brasiliensis. Plant Molecular Biology, 77(3), 299-308. doi:10.1007/s11103-011-9811-z | es_ES |
dc.description.references | Kitajima, S., Miura, K., Aoki, W., Yamato, K. T., Taira, T., Murakami, R., & Aburaya, S. (2016). Transcriptome and proteome analyses provide insight into laticifer’s defense of Euphorbia tirucalli against pests. Plant Physiology and Biochemistry, 108, 434-446. doi:10.1016/j.plaphy.2016.08.008 | es_ES |
dc.description.references | Rahman, A. Y. A., Usharraj, A. O., Misra, B. B., Thottathil, G. P., Jayasekaran, K., Feng, Y., … Alam, M. (2013). Draft genome sequence of the rubber tree Hevea brasiliensis. BMC Genomics, 14(1), 75. doi:10.1186/1471-2164-14-75 | es_ES |
dc.description.references | Van Bakel, H., Stout, J. M., Cote, A. G., Tallon, C. M., Sharpe, A. G., Hughes, T. R., & Page, J. E. (2011). The draft genome and transcriptome of Cannabis sativa. Genome Biology, 12(10), R102. doi:10.1186/gb-2011-12-10-r102 | es_ES |
dc.description.references | Sato, S., Hirakawa, H., Isobe, S., Fukai, E., Watanabe, A., Kato, M., … Fukui, K. (2010). Sequence Analysis of the Genome of an Oil-Bearing Tree, Jatropha curcas L. DNA Research, 18(1), 65-76. doi:10.1093/dnares/dsq030 | es_ES |
dc.description.references | Ming, R., Hou, S., Feng, Y., Yu, Q., Dionne-Laporte, A., Saw, J. H., … Lewis, K. L. T. (2008). The draft genome of the transgenic tropical fruit tree papaya (Carica papaya Linnaeus). Nature, 452(7190), 991-996. doi:10.1038/nature06856 | es_ES |
dc.description.references | Dussourd, D., & Eisner, T. (1987). Vein-cutting behavior: insect counterploy to the latex defense of plants. Science, 237(4817), 898-901. doi:10.1126/science.3616620 | es_ES |
dc.description.references | Konno, K., Hirayama, C., Nakamura, M., Tateishi, K., Tamura, Y., Hattori, M., & Kohno, K. (2004). Papain protects papaya trees from herbivorous insects: role of cysteine proteases in latex. The Plant Journal, 37(3), 370-378. doi:10.1046/j.1365-313x.2003.01968.x | es_ES |
dc.description.references | Huber, M., Epping, J., Schulze Gronover, C., Fricke, J., Aziz, Z., Brillatz, T., … Erb, M. (2016). A Latex Metabolite Benefits Plant Fitness under Root Herbivore Attack. PLOS Biology, 14(1), e1002332. doi:10.1371/journal.pbio.1002332 | es_ES |
dc.description.references | Pickard, W. F. (2008). Laticifers and secretory ducts: two other tube systems in plants. New Phytologist, 177(4), 877-888. doi:10.1111/j.1469-8137.2007.02323.x | es_ES |
dc.description.references | Becerra, J. X., & Venable, D. L. (1990). Rapid-Terpene-Bath and «Squirt-Gun» Defense in Bursera schlechtendalii and the Counterploy of Chrysomelid Beetles. Biotropica, 22(3), 320. doi:10.2307/2388545 | es_ES |
dc.description.references | Agrawal, A. A., & Konno, K. (2009). Latex: A Model for Understanding Mechanisms, Ecology, and Evolution of Plant Defense Against Herbivory. Annual Review of Ecology, Evolution, and Systematics, 40(1), 311-331. doi:10.1146/annurev.ecolsys.110308.120307 | es_ES |
dc.description.references | Van Parijs, J., Broekaert, W. F., Goldstein, I. J., & Peumans, W. J. (1991). Hevein: an antifungal protein from rubber-tree (Hevea brasiliensis) latex. Planta, 183(2), 258-264. doi:10.1007/bf00197797 | es_ES |
dc.description.references | Souza, D. P., Freitas, C. D. T., Pereira, D. A., Nogueira, F. C., Silva, F. D. A., Salas, C. E., & Ramos, M. V. (2011). Laticifer proteins play a defensive role against hemibiotrophic and necrotrophic phytopathogens. Planta, 234(1), 183-193. doi:10.1007/s00425-011-1392-1 | es_ES |
dc.description.references | Metcalfe, C. R. (1967). Distribution of latex in the plant kingdom. Economic Botany, 21(2), 115-127. doi:10.1007/bf02897859 | es_ES |
dc.description.references | Kliebenstein, D. J. (2013). Making new molecules—evolution of structures for novel metabolites in plants. Current Opinion in Plant Biology, 16(1), 112-117. doi:10.1016/j.pbi.2012.12.004 | es_ES |
dc.description.references | NIELSEN, P. E., NISHIMURA, H., OTVOS, J. W., & CALVIN, M. (1977). Plant Crops as a Source of Fuel and Hydrocarbon-Like Materials. Science, 198(4320), 942-944. doi:10.1126/science.198.4320.942 | es_ES |
dc.description.references | Calvin, M., Nemethy, E. K., Redenbaugh, K., & Otvos, J. W. (1982). Plants as a direct source of fuel. Experientia, 38(1), 18-22. doi:10.1007/bf01944519 | es_ES |
dc.description.references | Kalita, D. (2008). Hydrocarbon plant—New source of energy for future. Renewable and Sustainable Energy Reviews, 12(2), 455-471. doi:10.1016/j.rser.2006.07.008 | es_ES |