- -

Maximal frequent sequences applied to drug-drug interaction extraction

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Maximal frequent sequences applied to drug-drug interaction extraction

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.advisor Rosso ., Paolo es_ES
dc.contributor.advisor Danger Mercaderes, Roxana María es_ES
dc.contributor.author García Blasco, Sandra es_ES
dc.date.accessioned 2012-05-02T12:31:18Z
dc.date.available 2012-05-02T12:31:18Z
dc.date.created 2012-01
dc.date.issued 2012-05-02
dc.identifier.uri http://hdl.handle.net/10251/15342
dc.description.abstract A drug-drug interaction (DDI) occurs when the effects of a drug are modified by the presence of other drugs. DDIs can decrease therapeutic benefit or efficacy of treatments and this could have very harmful consequences in the patient's health that could even cause the patient's death. Knowing the interactions between prescribed drugs is of great clinical importance, it is very important to keep databases up-to-date with respect to new DDI. In this thesis we aim to build a system to assist healthcare professionals to be updated about published drug-drug interactions. The goal of this thesis is to study a method based on maximal frequent sequences (MFS) and machine learning techniques in order to automatically detect interactions between drugs in pharmacological and medical literature. With the study of these methods, the IT community will assist healthcare community to update their drug interactions database in a fast and semi-automatic way. In a first solution, we classify pharmacological sentences depending on whether or not they are describing a drug-drug interaction. This would enable to automatically find sentences containing drug-drug interactions. This solution is completely based in maximal frequent sequences (MFS) extracted from a set of test documents. In a second solution based in machine learning, we go further in the search and perform DDI extraction, determining if two specific drugs appearing in a sentence interact or not. This can be used as an assisting tool to populate databases with drug-drug interactions. The machine learning classifier is trained with several features i.e., bag of words, word categories, MFS, token and char level features and drug level features. The classifier we used was a Random Forest. This system was sent to the DDIExtraction 2011 competition and reached the 6th position. Finally, we introduce Maximal Frequent Discriminative Sequences (MFDS), a novel method of sequential pattern discovery that extends the concept of MFS to adapt it to classification tasks. es_ES
dc.format.extent 87 es_ES
dc.language Inglés es_ES
dc.publisher Universitat Politècnica de València es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Drug-drug interactions es_ES
dc.subject Information extraction es_ES
dc.subject Maximal frequent sequences es_ES
dc.subject.classification LENGUAJES Y SISTEMAS INFORMATICOS es_ES
dc.subject.other Máster Universitario en Inteligencia Artificial, Reconocimiento de Formas e Imagen Digital-Màster Universitari en Intel·Ligència Artificial: Reconeixement de Formes i Imatge Digital es_ES
dc.title Maximal frequent sequences applied to drug-drug interaction extraction es_ES
dc.type Tesis de máster es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Servicio de Alumnado - Servei d'Alumnat es_ES
dc.description.bibliographicCitation García Blasco, S. (2012). Maximal frequent sequences applied to drug-drug interaction extraction. http://hdl.handle.net/10251/15342 es_ES
dc.description.accrualMethod Archivo delegado es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem