Mostrar el registro sencillo del ítem
dc.contributor.author | Rodrigo, Guillermo | es_ES |
dc.contributor.author | Prakash, Satya | es_ES |
dc.contributor.author | Shen, Shensi | es_ES |
dc.contributor.author | Majer, Eszter | es_ES |
dc.contributor.author | DAROS ARNAU, JOSE ANTONIO | es_ES |
dc.contributor.author | Jaramillo, Alfonso | es_ES |
dc.date.accessioned | 2020-10-30T04:31:42Z | |
dc.date.available | 2020-10-30T04:31:42Z | |
dc.date.issued | 2017-09-19 | es_ES |
dc.identifier.issn | 0305-1048 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/153674 | |
dc.description.abstract | [EN] Synthetic gene circuits allow the behavior of living cells to be reprogrammed, and non-coding small RNAs (sRNAs) are increasingly being used as programmable regulators of gene expression. However, sRNAs (natural or synthetic) are generally used to regulate single target genes, while complex dynamic behaviors would require networks of sRNAs regulating each other. Here, we report a strategy for implementing such networks that exploits hybridization reactions carried out exclusively by multifaceted sRNAs that are both targets of and triggers for other sRNAs. These networks are ultimately coupled to the control of gene expression. We relied on a thermo-dynamic model of the different stable conformational states underlying this system at the nucleotide level. To test our model, we designed five different RNA hybridization networks with a linear architecture, and we implemented them in Escherichia coli. We validated the network architecture at the molecular level by native polyacrylamide gel electrophoresis, as well as the network function at the bacterial population and single-cell levels with a fluorescent reporter. Our results suggest that it is possible to engineer complex cellular programs based on RNA from first principles. Because these networks are mainly based on physical interactions, our designs could be expanded to other organisms as portable regulatory resources or to implement biological computations. | es_ES |
dc.description.sponsorship | The Consejo Superior de Investigaciones Cientificas (CSIC) Intramural [grant number 201440I017]; the Ministerio de Economia, Industria y Competitividad (MINECO)/FEDER [grant number BFU2015-66894-P]; and the AXA Research Fund Postdoctoral fellowship to G.R. The predoctoral fellowship [grant number AP2012-3751, MECD] to E.M. The Ministerio de Economia, Industria y Competitividad (MINECO) [grant numbers BIO2014-54269-R, AGL2013-49919-EXP] to J.A.D. The 7th Framework Programme [grant numbers 610730 (EVO-PROG), 613745 (PROMYS)]; the Horizon 2020 Marie Sklodowska-Curie [grant number 642738 (MetaRNA)]; the Engineering and Physical Sciences Research Council (EPSRC) and the Biotechnology and Biological Sciences Research Council (BBSRC) [grant number BB/M017982/1 (WISB centre)]; and the School of Life Sciences (U. Warwick) [startup allocation] to A.J. Funding for open access charge: EPSRC/BBSRC [BB/M017982/1 to A.J.]. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Oxford University Press | es_ES |
dc.relation.ispartof | Nucleic Acids Research | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.title | Model-based design of RNA hybridization networks implemented in living cells | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1093/nar/gkx698 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/EC/FP7/610730/EU/General-Purpose Programmable Evolution Machine on a Chip/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/UKRI//BB%2FM017982%2F1/GB/Warwick Integrative Synthetic Biology Centre/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MECD//AP2012-3751/ES/AP2012-3751/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/EC/FP7/613745/EU/Programming synthetic networks for bio-based production of value chemicals/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/EC/H2020/642738/EU/RNA-based technologies for single-cell metabolite analysis/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//AGL2013-49919-EXP/ES/DETECCION DE PATOGENOS Y BIOCOMPUTACION MEDIANTE CIRCUITOS REGULADORES EN PLANTAS/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//BIO2014-54269-R/ES/INSTRUMENTOS BIOTECNOLOGICOS DERIVADOS DE VIRUS DE PLANTAS/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/CSIC//201440I017/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//BFU2015-66894-P /ES/MODELADO, DISEÑO DE NOVO E INGENIERIA DE INTERRUPTORES DE RNA QUE RESPONDEN A SEÑALES GENETICAS/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes | es_ES |
dc.description.bibliographicCitation | Rodrigo, G.; Prakash, S.; Shen, S.; Majer, E.; Daros Arnau, JA.; Jaramillo, A. (2017). Model-based design of RNA hybridization networks implemented in living cells. Nucleic Acids Research. 45(16):9797-9808. https://doi.org/10.1093/nar/gkx698 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1093/nar/gkx698 | es_ES |
dc.description.upvformatpinicio | 9797 | es_ES |
dc.description.upvformatpfin | 9808 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 45 | es_ES |
dc.description.issue | 16 | es_ES |
dc.identifier.pmid | 28934501 | es_ES |
dc.identifier.pmcid | PMC5766206 | es_ES |
dc.relation.pasarela | S\356542 | es_ES |
dc.contributor.funder | UK Research and Innovation | es_ES |
dc.contributor.funder | AXA Research Fund | es_ES |
dc.contributor.funder | Ministerio de Educación, Cultura y Deporte | es_ES |
dc.contributor.funder | Consejo Superior de Investigaciones Científicas | es_ES |
dc.contributor.funder | Biotechnology and Biological Sciences Research Council, Reino Unido | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.description.references | Ausländer, S., Ausländer, D., Müller, M., Wieland, M., & Fussenegger, M. (2012). Programmable single-cell mammalian biocomputers. Nature, 487(7405), 123-127. doi:10.1038/nature11149 | es_ES |
dc.description.references | Friedland, A. E., Lu, T. K., Wang, X., Shi, D., Church, G., & Collins, J. J. (2009). Synthetic Gene Networks That Count. Science, 324(5931), 1199-1202. doi:10.1126/science.1172005 | es_ES |
dc.description.references | Nielsen, A. A. K., Der, B. S., Shin, J., Vaidyanathan, P., Paralanov, V., Strychalski, E. A., … Voigt, C. A. (2016). Genetic circuit design automation. Science, 352(6281), aac7341-aac7341. doi:10.1126/science.aac7341 | es_ES |
dc.description.references | Green, A. A., Silver, P. A., Collins, J. J., & Yin, P. (2014). Toehold Switches: De-Novo-Designed Regulators of Gene Expression. Cell, 159(4), 925-939. doi:10.1016/j.cell.2014.10.002 | es_ES |
dc.description.references | Dirks, R. M., & Pierce, N. A. (2004). From The Cover: Triggered amplification by hybridization chain reaction. Proceedings of the National Academy of Sciences, 101(43), 15275-15278. doi:10.1073/pnas.0407024101 | es_ES |
dc.description.references | Chappell, J., Takahashi, M. K., & Lucks, J. B. (2015). Creating small transcription activating RNAs. Nature Chemical Biology, 11(3), 214-220. doi:10.1038/nchembio.1737 | es_ES |
dc.description.references | Isaacs, F. J., Dwyer, D. J., Ding, C., Pervouchine, D. D., Cantor, C. R., & Collins, J. J. (2004). Engineered riboregulators enable post-transcriptional control of gene expression. Nature Biotechnology, 22(7), 841-847. doi:10.1038/nbt986 | es_ES |
dc.description.references | Qi, L., Lucks, J. B., Liu, C. C., Mutalik, V. K., & Arkin, A. P. (2012). Engineering naturally occurring trans -acting non-coding RNAs to sense molecular signals. Nucleic Acids Research, 40(12), 5775-5786. doi:10.1093/nar/gks168 | es_ES |
dc.description.references | Desai, S. K., & Gallivan, J. P. (2004). Genetic Screens and Selections for Small Molecules Based on a Synthetic Riboswitch That Activates Protein Translation. Journal of the American Chemical Society, 126(41), 13247-13254. doi:10.1021/ja048634j | es_ES |
dc.description.references | Wachsmuth, M., Findeiss, S., Weissheimer, N., Stadler, P. F., & Morl, M. (2012). De novo design of a synthetic riboswitch that regulates transcription termination. Nucleic Acids Research, 41(4), 2541-2551. doi:10.1093/nar/gks1330 | es_ES |
dc.description.references | Wieland, M., & Hartig, J. S. (2008). Improved Aptazyme Design and In Vivo Screening Enable Riboswitching in Bacteria. Angewandte Chemie International Edition, 47(14), 2604-2607. doi:10.1002/anie.200703700 | es_ES |
dc.description.references | Carothers, J. M., Goler, J. A., Juminaga, D., & Keasling, J. D. (2011). Model-Driven Engineering of RNA Devices to Quantitatively Program Gene Expression. Science, 334(6063), 1716-1719. doi:10.1126/science.1212209 | es_ES |
dc.description.references | Hochrein, L. M., Schwarzkopf, M., Shahgholi, M., Yin, P., & Pierce, N. A. (2013). Conditional Dicer Substrate Formation via Shape and Sequence Transduction with Small Conditional RNAs. Journal of the American Chemical Society, 135(46), 17322-17330. doi:10.1021/ja404676x | es_ES |
dc.description.references | Rodrigo, G., Landrain, T. E., Majer, E., Daròs, J.-A., & Jaramillo, A. (2013). Full Design Automation of Multi-State RNA Devices to Program Gene Expression Using Energy-Based Optimization. PLoS Computational Biology, 9(8), e1003172. doi:10.1371/journal.pcbi.1003172 | es_ES |
dc.description.references | Hofacker, I. L., Fontana, W., Stadler, P. F., Bonhoeffer, L. S., Tacker, M., & Schuster, P. (1994). Fast folding and comparison of RNA secondary structures. Monatshefte f�r Chemie Chemical Monthly, 125(2), 167-188. doi:10.1007/bf00818163 | es_ES |
dc.description.references | Mathews, D. H., Disney, M. D., Childs, J. L., Schroeder, S. J., Zuker, M., & Turner, D. H. (2004). Incorporating chemical modification constraints into a dynamic programming algorithm for prediction of RNA secondary structure. Proceedings of the National Academy of Sciences, 101(19), 7287-7292. doi:10.1073/pnas.0401799101 | es_ES |
dc.description.references | Dirks, R. M., Bois, J. S., Schaeffer, J. M., Winfree, E., & Pierce, N. A. (2007). Thermodynamic Analysis of Interacting Nucleic Acid Strands. SIAM Review, 49(1), 65-88. doi:10.1137/060651100 | es_ES |
dc.description.references | Wright, P. R., Georg, J., Mann, M., Sorescu, D. A., Richter, A. S., Lott, S., … Backofen, R. (2014). CopraRNA and IntaRNA: predicting small RNA targets, networks and interaction domains. Nucleic Acids Research, 42(W1), W119-W123. doi:10.1093/nar/gku359 | es_ES |
dc.description.references | Adleman, L. (1994). Molecular computation of solutions to combinatorial problems. Science, 266(5187), 1021-1024. doi:10.1126/science.7973651 | es_ES |
dc.description.references | Seelig, G., Soloveichik, D., Zhang, D. Y., & Winfree, E. (2006). Enzyme-Free Nucleic Acid Logic Circuits. Science, 314(5805), 1585-1588. doi:10.1126/science.1132493 | es_ES |
dc.description.references | Yin, P., Choi, H. M. T., Calvert, C. R., & Pierce, N. A. (2008). Programming biomolecular self-assembly pathways. Nature, 451(7176), 318-322. doi:10.1038/nature06451 | es_ES |
dc.description.references | Kirkpatrick, S., Gelatt, C. D., & Vecchi, M. P. (1983). Optimization by Simulated Annealing. Science, 220(4598), 671-680. doi:10.1126/science.220.4598.671 | es_ES |
dc.description.references | Hersch, G. L., Baker, T. A., & Sauer, R. T. (2004). SspB delivery of substrates for ClpXP proteolysis probed by the design of improved degradation tags. Proceedings of the National Academy of Sciences, 101(33), 12136-12141. doi:10.1073/pnas.0404733101 | es_ES |
dc.description.references | Lutz, R. (1997). Independent and tight regulation of transcriptional units in Escherichia coli via the LacR/O, the TetR/O and AraC/I1-I2 regulatory elements. Nucleic Acids Research, 25(6), 1203-1210. doi:10.1093/nar/25.6.1203 | es_ES |
dc.description.references | Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch, T., … Cardona, A. (2012). Fiji: an open-source platform for biological-image analysis. Nature Methods, 9(7), 676-682. doi:10.1038/nmeth.2019 | es_ES |
dc.description.references | Laidler, K. J., & King, M. C. (1983). Development of transition-state theory. The Journal of Physical Chemistry, 87(15), 2657-2664. doi:10.1021/j100238a002 | es_ES |
dc.description.references | Rodrigo, G., Majer, E., Prakash, S., Daròs, J.-A., Jaramillo, A., & Poyatos, J. F. (2015). Exploring the Dynamics and Mutational Landscape of Riboregulation with a Minimal Synthetic Circuit in Living Cells. Biophysical Journal, 109(5), 1070-1076. doi:10.1016/j.bpj.2015.07.021 | es_ES |
dc.description.references | Srinivas, N., Ouldridge, T. E., Šulc, P., Schaeffer, J. M., Yurke, B., Louis, A. A., … Winfree, E. (2013). On the biophysics and kinetics of toehold-mediated DNA strand displacement. Nucleic Acids Research, 41(22), 10641-10658. doi:10.1093/nar/gkt801 | es_ES |
dc.description.references | Culler, S. J., Hoff, K. G., & Smolke, C. D. (2010). Reprogramming Cellular Behavior with RNA Controllers Responsive to Endogenous Proteins. Science, 330(6008), 1251-1255. doi:10.1126/science.1192128 | es_ES |
dc.description.references | Benenson, Y., Paz-Elizur, T., Adar, R., Keinan, E., Livneh, Z., & Shapiro, E. (2001). Programmable and autonomous computing machine made of biomolecules. Nature, 414(6862), 430-434. doi:10.1038/35106533 | es_ES |