- -

Model-based design of RNA hybridization networks implemented in living cells

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Model-based design of RNA hybridization networks implemented in living cells

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Rodrigo, Guillermo es_ES
dc.contributor.author Prakash, Satya es_ES
dc.contributor.author Shen, Shensi es_ES
dc.contributor.author Majer, Eszter es_ES
dc.contributor.author DAROS ARNAU, JOSE ANTONIO es_ES
dc.contributor.author Jaramillo, Alfonso es_ES
dc.date.accessioned 2020-10-30T04:31:42Z
dc.date.available 2020-10-30T04:31:42Z
dc.date.issued 2017-09-19 es_ES
dc.identifier.issn 0305-1048 es_ES
dc.identifier.uri http://hdl.handle.net/10251/153674
dc.description.abstract [EN] Synthetic gene circuits allow the behavior of living cells to be reprogrammed, and non-coding small RNAs (sRNAs) are increasingly being used as programmable regulators of gene expression. However, sRNAs (natural or synthetic) are generally used to regulate single target genes, while complex dynamic behaviors would require networks of sRNAs regulating each other. Here, we report a strategy for implementing such networks that exploits hybridization reactions carried out exclusively by multifaceted sRNAs that are both targets of and triggers for other sRNAs. These networks are ultimately coupled to the control of gene expression. We relied on a thermo-dynamic model of the different stable conformational states underlying this system at the nucleotide level. To test our model, we designed five different RNA hybridization networks with a linear architecture, and we implemented them in Escherichia coli. We validated the network architecture at the molecular level by native polyacrylamide gel electrophoresis, as well as the network function at the bacterial population and single-cell levels with a fluorescent reporter. Our results suggest that it is possible to engineer complex cellular programs based on RNA from first principles. Because these networks are mainly based on physical interactions, our designs could be expanded to other organisms as portable regulatory resources or to implement biological computations. es_ES
dc.description.sponsorship The Consejo Superior de Investigaciones Cientificas (CSIC) Intramural [grant number 201440I017]; the Ministerio de Economia, Industria y Competitividad (MINECO)/FEDER [grant number BFU2015-66894-P]; and the AXA Research Fund Postdoctoral fellowship to G.R. The predoctoral fellowship [grant number AP2012-3751, MECD] to E.M. The Ministerio de Economia, Industria y Competitividad (MINECO) [grant numbers BIO2014-54269-R, AGL2013-49919-EXP] to J.A.D. The 7th Framework Programme [grant numbers 610730 (EVO-PROG), 613745 (PROMYS)]; the Horizon 2020 Marie Sklodowska-Curie [grant number 642738 (MetaRNA)]; the Engineering and Physical Sciences Research Council (EPSRC) and the Biotechnology and Biological Sciences Research Council (BBSRC) [grant number BB/M017982/1 (WISB centre)]; and the School of Life Sciences (U. Warwick) [startup allocation] to A.J. Funding for open access charge: EPSRC/BBSRC [BB/M017982/1 to A.J.]. es_ES
dc.language Inglés es_ES
dc.publisher Oxford University Press es_ES
dc.relation.ispartof Nucleic Acids Research es_ES
dc.rights Reserva de todos los derechos es_ES
dc.title Model-based design of RNA hybridization networks implemented in living cells es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1093/nar/gkx698 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/FP7/610730/EU/General-Purpose Programmable Evolution Machine on a Chip/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UKRI//BB%2FM017982%2F1/GB/Warwick Integrative Synthetic Biology Centre/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MECD//AP2012-3751/ES/AP2012-3751/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/FP7/613745/EU/Programming synthetic networks for bio-based production of value chemicals/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/642738/EU/RNA-based technologies for single-cell metabolite analysis/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//AGL2013-49919-EXP/ES/DETECCION DE PATOGENOS Y BIOCOMPUTACION MEDIANTE CIRCUITOS REGULADORES EN PLANTAS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//BIO2014-54269-R/ES/INSTRUMENTOS BIOTECNOLOGICOS DERIVADOS DE VIRUS DE PLANTAS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/CSIC//201440I017/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//BFU2015-66894-P /ES/MODELADO, DISEÑO DE NOVO E INGENIERIA DE INTERRUPTORES DE RNA QUE RESPONDEN A SEÑALES GENETICAS/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes es_ES
dc.description.bibliographicCitation Rodrigo, G.; Prakash, S.; Shen, S.; Majer, E.; Daros Arnau, JA.; Jaramillo, A. (2017). Model-based design of RNA hybridization networks implemented in living cells. Nucleic Acids Research. 45(16):9797-9808. https://doi.org/10.1093/nar/gkx698 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1093/nar/gkx698 es_ES
dc.description.upvformatpinicio 9797 es_ES
dc.description.upvformatpfin 9808 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 45 es_ES
dc.description.issue 16 es_ES
dc.identifier.pmid 28934501 es_ES
dc.identifier.pmcid PMC5766206 es_ES
dc.relation.pasarela S\356542 es_ES
dc.contributor.funder UK Research and Innovation es_ES
dc.contributor.funder AXA Research Fund es_ES
dc.contributor.funder Ministerio de Educación, Cultura y Deporte es_ES
dc.contributor.funder Consejo Superior de Investigaciones Científicas es_ES
dc.contributor.funder Biotechnology and Biological Sciences Research Council, Reino Unido es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Ausländer, S., Ausländer, D., Müller, M., Wieland, M., & Fussenegger, M. (2012). Programmable single-cell mammalian biocomputers. Nature, 487(7405), 123-127. doi:10.1038/nature11149 es_ES
dc.description.references Friedland, A. E., Lu, T. K., Wang, X., Shi, D., Church, G., & Collins, J. J. (2009). Synthetic Gene Networks That Count. Science, 324(5931), 1199-1202. doi:10.1126/science.1172005 es_ES
dc.description.references Nielsen, A. A. K., Der, B. S., Shin, J., Vaidyanathan, P., Paralanov, V., Strychalski, E. A., … Voigt, C. A. (2016). Genetic circuit design automation. Science, 352(6281), aac7341-aac7341. doi:10.1126/science.aac7341 es_ES
dc.description.references Green, A. A., Silver, P. A., Collins, J. J., & Yin, P. (2014). Toehold Switches: De-Novo-Designed Regulators of Gene Expression. Cell, 159(4), 925-939. doi:10.1016/j.cell.2014.10.002 es_ES
dc.description.references Dirks, R. M., & Pierce, N. A. (2004). From The Cover: Triggered amplification by hybridization chain reaction. Proceedings of the National Academy of Sciences, 101(43), 15275-15278. doi:10.1073/pnas.0407024101 es_ES
dc.description.references Chappell, J., Takahashi, M. K., & Lucks, J. B. (2015). Creating small transcription activating RNAs. Nature Chemical Biology, 11(3), 214-220. doi:10.1038/nchembio.1737 es_ES
dc.description.references Isaacs, F. J., Dwyer, D. J., Ding, C., Pervouchine, D. D., Cantor, C. R., & Collins, J. J. (2004). Engineered riboregulators enable post-transcriptional control of gene expression. Nature Biotechnology, 22(7), 841-847. doi:10.1038/nbt986 es_ES
dc.description.references Qi, L., Lucks, J. B., Liu, C. C., Mutalik, V. K., & Arkin, A. P. (2012). Engineering naturally occurring trans -acting non-coding RNAs to sense molecular signals. Nucleic Acids Research, 40(12), 5775-5786. doi:10.1093/nar/gks168 es_ES
dc.description.references Desai, S. K., & Gallivan, J. P. (2004). Genetic Screens and Selections for Small Molecules Based on a Synthetic Riboswitch That Activates Protein Translation. Journal of the American Chemical Society, 126(41), 13247-13254. doi:10.1021/ja048634j es_ES
dc.description.references Wachsmuth, M., Findeiss, S., Weissheimer, N., Stadler, P. F., & Morl, M. (2012). De novo design of a synthetic riboswitch that regulates transcription termination. Nucleic Acids Research, 41(4), 2541-2551. doi:10.1093/nar/gks1330 es_ES
dc.description.references Wieland, M., & Hartig, J. S. (2008). Improved Aptazyme Design and In Vivo Screening Enable Riboswitching in Bacteria. Angewandte Chemie International Edition, 47(14), 2604-2607. doi:10.1002/anie.200703700 es_ES
dc.description.references Carothers, J. M., Goler, J. A., Juminaga, D., & Keasling, J. D. (2011). Model-Driven Engineering of RNA Devices to Quantitatively Program Gene Expression. Science, 334(6063), 1716-1719. doi:10.1126/science.1212209 es_ES
dc.description.references Hochrein, L. M., Schwarzkopf, M., Shahgholi, M., Yin, P., & Pierce, N. A. (2013). Conditional Dicer Substrate Formation via Shape and Sequence Transduction with Small Conditional RNAs. Journal of the American Chemical Society, 135(46), 17322-17330. doi:10.1021/ja404676x es_ES
dc.description.references Rodrigo, G., Landrain, T. E., Majer, E., Daròs, J.-A., & Jaramillo, A. (2013). Full Design Automation of Multi-State RNA Devices to Program Gene Expression Using Energy-Based Optimization. PLoS Computational Biology, 9(8), e1003172. doi:10.1371/journal.pcbi.1003172 es_ES
dc.description.references Hofacker, I. L., Fontana, W., Stadler, P. F., Bonhoeffer, L. S., Tacker, M., & Schuster, P. (1994). Fast folding and comparison of RNA secondary structures. Monatshefte f�r Chemie Chemical Monthly, 125(2), 167-188. doi:10.1007/bf00818163 es_ES
dc.description.references Mathews, D. H., Disney, M. D., Childs, J. L., Schroeder, S. J., Zuker, M., & Turner, D. H. (2004). Incorporating chemical modification constraints into a dynamic programming algorithm for prediction of RNA secondary structure. Proceedings of the National Academy of Sciences, 101(19), 7287-7292. doi:10.1073/pnas.0401799101 es_ES
dc.description.references Dirks, R. M., Bois, J. S., Schaeffer, J. M., Winfree, E., & Pierce, N. A. (2007). Thermodynamic Analysis of Interacting Nucleic Acid Strands. SIAM Review, 49(1), 65-88. doi:10.1137/060651100 es_ES
dc.description.references Wright, P. R., Georg, J., Mann, M., Sorescu, D. A., Richter, A. S., Lott, S., … Backofen, R. (2014). CopraRNA and IntaRNA: predicting small RNA targets, networks and interaction domains. Nucleic Acids Research, 42(W1), W119-W123. doi:10.1093/nar/gku359 es_ES
dc.description.references Adleman, L. (1994). Molecular computation of solutions to combinatorial problems. Science, 266(5187), 1021-1024. doi:10.1126/science.7973651 es_ES
dc.description.references Seelig, G., Soloveichik, D., Zhang, D. Y., & Winfree, E. (2006). Enzyme-Free Nucleic Acid Logic Circuits. Science, 314(5805), 1585-1588. doi:10.1126/science.1132493 es_ES
dc.description.references Yin, P., Choi, H. M. T., Calvert, C. R., & Pierce, N. A. (2008). Programming biomolecular self-assembly pathways. Nature, 451(7176), 318-322. doi:10.1038/nature06451 es_ES
dc.description.references Kirkpatrick, S., Gelatt, C. D., & Vecchi, M. P. (1983). Optimization by Simulated Annealing. Science, 220(4598), 671-680. doi:10.1126/science.220.4598.671 es_ES
dc.description.references Hersch, G. L., Baker, T. A., & Sauer, R. T. (2004). SspB delivery of substrates for ClpXP proteolysis probed by the design of improved degradation tags. Proceedings of the National Academy of Sciences, 101(33), 12136-12141. doi:10.1073/pnas.0404733101 es_ES
dc.description.references Lutz, R. (1997). Independent and tight regulation of transcriptional units in Escherichia coli via the LacR/O, the TetR/O and AraC/I1-I2 regulatory elements. Nucleic Acids Research, 25(6), 1203-1210. doi:10.1093/nar/25.6.1203 es_ES
dc.description.references Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch, T., … Cardona, A. (2012). Fiji: an open-source platform for biological-image analysis. Nature Methods, 9(7), 676-682. doi:10.1038/nmeth.2019 es_ES
dc.description.references Laidler, K. J., & King, M. C. (1983). Development of transition-state theory. The Journal of Physical Chemistry, 87(15), 2657-2664. doi:10.1021/j100238a002 es_ES
dc.description.references Rodrigo, G., Majer, E., Prakash, S., Daròs, J.-A., Jaramillo, A., & Poyatos, J. F. (2015). Exploring the Dynamics and Mutational Landscape of Riboregulation with a Minimal Synthetic Circuit in Living Cells. Biophysical Journal, 109(5), 1070-1076. doi:10.1016/j.bpj.2015.07.021 es_ES
dc.description.references Srinivas, N., Ouldridge, T. E., Šulc, P., Schaeffer, J. M., Yurke, B., Louis, A. A., … Winfree, E. (2013). On the biophysics and kinetics of toehold-mediated DNA strand displacement. Nucleic Acids Research, 41(22), 10641-10658. doi:10.1093/nar/gkt801 es_ES
dc.description.references Culler, S. J., Hoff, K. G., & Smolke, C. D. (2010). Reprogramming Cellular Behavior with RNA Controllers Responsive to Endogenous Proteins. Science, 330(6008), 1251-1255. doi:10.1126/science.1192128 es_ES
dc.description.references Benenson, Y., Paz-Elizur, T., Adar, R., Keinan, E., Livneh, Z., & Shapiro, E. (2001). Programmable and autonomous computing machine made of biomolecules. Nature, 414(6862), 430-434. doi:10.1038/35106533 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem