- -

On the Prufer rank of mutually permutable products of abelian groups

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

On the Prufer rank of mutually permutable products of abelian groups

Show full item record

Ballester-Bolinches, A.; Cossey, J.; Meng, H.; Pedraza Aguilera, MC. (2019). On the Prufer rank of mutually permutable products of abelian groups. Annali di Matematica Pura ed Applicata (1923 -). 198(3):811-819. https://doi.org/10.1007/s10231-018-0800-6

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/153678

Files in this item

Item Metadata

Title: On the Prufer rank of mutually permutable products of abelian groups
Author: Ballester-Bolinches, A. Cossey, John Meng, Hangyang Pedraza Aguilera, María Carmen
UPV Unit: Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada
Issued date:
Abstract:
[EN] A group G has finite (or Prufer or special) rank if every finitely generated subgroup of G can be generated by r elements and r is the least integer with this property. The aim of this paper is to prove the following ...[+]
Subjects: Abelian group , Soluble group , Polycyclic group , Rank , Factorisations
Copyrigths: Reserva de todos los derechos
Source:
Annali di Matematica Pura ed Applicata (1923 -). (issn: 0373-3114 )
DOI: 10.1007/s10231-018-0800-6
Publisher:
Springer-Verlag
Publisher version: https://doi.org/10.1007/s10231-018-0800-6
Project ID:
Ministerio de Ciencia e Innovación/MTM2014-54707-C3-1-P
Generalitat Valenciana/Prometeo/2017/057
CSC/201606890006
Thanks:
The first and third authors are supported by the Grant MTM2014-54707-C3-1-P from the Ministerio de Economia y Competitividad, Spain, and FEDER, European Union. The first and fourth authors are supported by Prometeo/2017/057 ...[+]
Type: Artículo

References

Amberg, B., Franciosi, S., De Giovanni, F.: Products of Groups, vol. 992. Clarendon Press, Oxford (1992)

Amberg, B., Kazarin, L.S.: On the rank of a product of two finite $$p$$ p -groups and nilpotent $$p$$ p -algebras. Commun. Algebra 27(8), 3895–3907 (1999)

Amberg, B., Sysak, Y.P.: Locally soluble products of two subgroups with finite rank. Commun. Algebra 24(7), 2421–2445 (1996) [+]
Amberg, B., Franciosi, S., De Giovanni, F.: Products of Groups, vol. 992. Clarendon Press, Oxford (1992)

Amberg, B., Kazarin, L.S.: On the rank of a product of two finite $$p$$ p -groups and nilpotent $$p$$ p -algebras. Commun. Algebra 27(8), 3895–3907 (1999)

Amberg, B., Sysak, Y.P.: Locally soluble products of two subgroups with finite rank. Commun. Algebra 24(7), 2421–2445 (1996)

Ballester-Bolinches, A., Esteban-Romero, R., Asaad, M.: Products of Finite Groups, vol. 53. Walter de Gruyter, Berlin/New York (2010)

Baumslag, G., Bieri, R.: Constructable solvable groups. Math. Z. 151(3), 249–257 (1976)

Beidleman, J., Heineken, H.: Totally permutable torsion subgroups. J. Group Theory 2, 377–392 (1999)

Beidleman, J., Heineken, H.: A survey of mutually and totally permutable products in infinite groups, topics in infinite groups. Quad. Mat 8, 45–62 (2001)

Cooper, C.D.: Power automorphisms of a group. Math. Z. 107(5), 335–356 (1968)

Dixon, M.R.: Sylow Theory, Formations, and Fitting Classes in Locally Finite Groups, vol. 2. World Scientific, Singapore (1994)

Huppert, B.: Endliche Gruppen I, vol. 134. Springer, Berlin, Heidelberg (1967). https://doi.org/10.1007/978-3-642-64981-3

Janko, Z.: Finite 2-groups with exactly one nonmetacyclic maximal subgroup. Isr. J. Math. 166(1), 313–347 (2008)

Linnell, P.A., Warhurst, D.: Bounding the number of generators of a polycyclic group. Arch. Math. 37(1), 7–17 (1981)

Lucchini, A.: A bound on the number of generators of a finite group. Arch. Math. 53(4), 313–317 (1989)

Lucchini, A.: A bound on the presentation rank of a finite group. Bull. Lond. Math. Soc. 29(4), 389–394 (1997)

[-]

This item appears in the following Collection(s)

Show full item record