Calderón, A.P.: Intermediate spaces and interpolation, the complex method. Stud. Math. 24, 113–190 (1964)
Davis, W.J., Garling, D.J.H., Tomczak-Jaegermann, N.: The complex convexity of quasi-normed linear spaces. J. Funct. Anal. 55, 110–150 (1984)
Defant, A.: Variants of the Maurey–Rosenthal theorem for quasi Köthe function spaces. Positivity 5, 153–175 (2001)
[+]
Calderón, A.P.: Intermediate spaces and interpolation, the complex method. Stud. Math. 24, 113–190 (1964)
Davis, W.J., Garling, D.J.H., Tomczak-Jaegermann, N.: The complex convexity of quasi-normed linear spaces. J. Funct. Anal. 55, 110–150 (1984)
Defant, A.: Variants of the Maurey–Rosenthal theorem for quasi Köthe function spaces. Positivity 5, 153–175 (2001)
Defant, A., Mastyło, M., Michels, C.: Orlicz norm estimates for eigenvalues of matrices. Isr. J. Math. 132, 45–59 (2002)
Defant, A., Sánchez Pérez, E.A.: Maurey–Rosenthal factorization of positive operators and convexity. J. Math. Anal. Appl. 297, 771–790 (2004)
Defant, A., Sánchez Pérez, E.A.: Domination of operators on function spaces. Math. Proc. Camb. Phil. Soc. 146, 57–66 (2009)
Diestel, J.: Sequences and Series in Banach Spaces. Springer, Berlin (1984)
Diestel, J., Jarchow, H., Tonge, A.: Absolutely Summing Operators. Cambridge University Press, Cambridge (1995)
Dilworth, S.J.: Special Banach lattices and their applications. In: Handbook of the Geometry of Banach Spaces, vol. 1. Elsevier, Amsterdam (2001)
Figiel, T., Pisier, G.: Séries alétoires dans les espaces uniformément convexes ou uniformément lisses. Comptes Rendus de l’Académie des Sciences, Paris, Série A 279, 611–614 (1974)
Kalton, N.J., Montgomery-Smith, S.J.: Set-functions and factorization. Arch. Math. (Basel) 61(2), 183–200 (1993)
Kamińska, A., Mastyło, M.: Abstract duality Sawyer formula and its applications. Monatsh. Math. 151(3), 223–245 (2007)
Kantorovich, L.V., Akilov, G.P.: Functional Analysis, 2nd edn. Pergamon Press, Oxford (1982)
Lindenstrauss, J., Tzafriri, L.: Classical Banach Spaces II. Springer, Berlin (1979)
Lozanovskii, G.Ya.: On some Banach lattices IV, Sibirsk. Mat. Z. 14, 140–155 (1973) (in Russian); English transl.: Siberian. Math. J. 14, 97–108 (1973)
Lozanovskii, G.Ya.:Transformations of ideal Banach spaces by means of concave functions. In: Qualitative and Approximate Methods for the Investigation of Operator Equations, Yaroslavl, vol. 3, pp. 122–147 (1978) (Russian)
Mastyło, M., Szwedek, R.: Interpolative constructions and factorization of operators. J. Math. Anal. Appl. 401, 198–208 (2013)
Nikišin, E.M.: Resonance theorems and superlinear operators. Usp. Mat. Nauk 25, 129–191 (1970) (Russian)
Okada, S., Ricker, W.J., Sánchez Pérez, E.A.: Optimal Domain and Integral Extension of Operators acting in Function Spaces. Operator Theory: Adv. Appl., vol. 180. Birkhäuser, Basel (2008)
Pisier, G.: Factorization of linear operators and geometry of Banach spaces. CBMS Regional Conference Series in Mathematics, vol. 60. Published for the Conference Board of the Mathematical Sciences, Washington, DC (1986)
Reisner, S.: On two theorems of Lozanovskii concerning intermediate Banach lattices, geometric aspects of functional analysis (1986/87). Lecture Notes in Math., vol. 1317, pp. 67–83. Springer, Berlin (1988)
Wojtaszczyk, P.: Banach Spaces for Analysts. Cambridge University Press, Cambridge (1991)
[-]