- -

Calibration of thermal analysis models and thermal sensors in a homogeneous building enclosure

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Calibration of thermal analysis models and thermal sensors in a homogeneous building enclosure

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Gil Benso, Enrique es_ES
dc.contributor.author Lerma Elvira, Carlos es_ES
dc.contributor.author Llop, Sara es_ES
dc.contributor.author Mas Tomas, Maria De Los Angeles es_ES
dc.contributor.author Vercher Sanchis, José es_ES
dc.date.accessioned 2020-10-30T04:32:25Z
dc.date.available 2020-10-30T04:32:25Z
dc.date.issued 2019-01-25 es_ES
dc.identifier.uri http://hdl.handle.net/10251/153687
dc.description.abstract [EN] A low-cost data acquisition system that records information with K-type temperature probes and Dallas thermometers has been designed to carry out this research. For this, both the software and the hardware have been designed. A specimen was conducted for the thermal analysis of a homogeneous prism of a building wall. Environmental conditions have been controlled in laboratory. Four of the prism faces are thermally insulated with nearly adiabatic conditions. A source of heat is placed on one of the two uninsulated faces of the prism. This induces a temperature gradient in the wall. A sufficient set of thermometers is introduced into the prism to control the temperature gradient. The data acquisition system consists of Arduino-based controllers. The temperature at each moment can be accurately controlled with them. The data generated are saved in a file for later analysis, and to publish them on a web page is possible for real-time queries. These data allow to validate the finite element simulation model which has been carried out for this specimen. Thus, the results of the specimen have been compared with the data obtained from the model, and this allows to extrapolate the model for the thermal analysis of other façades. es_ES
dc.language Inglés es_ES
dc.publisher Trans Tech Publications es_ES
dc.relation.ispartof Applied Mechanics and Materials (Online) es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Building materials es_ES
dc.subject Calibration es_ES
dc.subject Thermal sensors es_ES
dc.subject Façade es_ES
dc.subject.classification CONSTRUCCIONES ARQUITECTONICAS es_ES
dc.subject.classification MECANICA DE LOS MEDIOS CONTINUOS Y TEORIA DE ESTRUCTURAS es_ES
dc.title Calibration of thermal analysis models and thermal sensors in a homogeneous building enclosure es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.4028/www.scientific.net/AMM.887.597 es_ES
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Mecánica de los Medios Continuos y Teoría de Estructuras - Departament de Mecànica dels Medis Continus i Teoria d'Estructures es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Construcciones Arquitectónicas - Departament de Construccions Arquitectòniques es_ES
dc.description.bibliographicCitation Gil Benso, E.; Lerma Elvira, C.; Llop, S.; Mas Tomas, MDLA.; Vercher Sanchis, J. (2019). Calibration of thermal analysis models and thermal sensors in a homogeneous building enclosure. Applied Mechanics and Materials (Online). 887:597-604. https://doi.org/10.4028/www.scientific.net/AMM.887.597 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.4028/www.scientific.net/AMM.887.597 es_ES
dc.description.upvformatpinicio 597 es_ES
dc.description.upvformatpfin 604 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 887 es_ES
dc.identifier.eissn 1662-7482 es_ES
dc.relation.pasarela S\376886 es_ES
dc.description.references Pérez, G., Coma, J., Martorell, I., Cabeza, L. F. Vertical Greenery Systems (VGS) for energy saving in buildings: A review. Renewable and Sustainable Energy Reviews 39, 139-165, 2014. http://dx.doi.org/10.1016/j.rser.2014.07.055. es_ES
dc.description.references Evelia S., Blanco, I., Campiotti, C.A., Bibbiani, C., Fantozzi, F., Vox, G. Green control of microclimate in buildings. Agriculture and Agricultural Science Procedia 8, 576 – 582, 2016. http://dx.doi.org/10.1016/j.aaspro.2016.02.078. es_ES
dc.description.references Cameron, R. W. F., Taylor, J. E., Emmett, M. R. What's cool' in the world of green façades, How plant choice influences the cooling properties of green walls. Building and Environment 73, 198-207, 2014. http://dx.doi.org/10.1016/j.buildenv.2013.12.005. es_ES
dc.description.references Norton, B. A., Coutts, A. M., Livesley, S. J., Harris, R. J., Hunter, A. M., Williams, N. S. G. Planning for cooler cities: A framework to prioritise green infrastructure to mitigate high temperatures in urban landscapes. Landscape and Urban Planning 134, 127-138, 2015. http://dx.doi.org/10.1016/j.landurbplan.2014.10.018. es_ES
dc.description.references Lerma, C.; Mas, Á.; Gil, E.; Vercher, J.; Peñalver, M.J. Pathology of Building Materials in Historic Buildings. Relationship Between Laboratory Testing and Infrared Thermography. Mater. Construcc. 64 [313], e009, 2014. http://dx.doi.org/10.3989/mc.2013.06612. es_ES
dc.description.references Ferdoush, S., Li, X. Wireless sensor network system design using raspberry Pi and Arduino for environmental monitoring applications. The 9th International Conference on Future Networks and Communications (FNC'2014)/The 11th International Conference on Mobile Systems and Pervasive Computing (MobiSPC'14), Ontario, Canada, August 17–20 vol. 34, p.103–110, 2014. http://dx.doi.org/10.1016/j.procs.2014.07.059. es_ES
dc.description.references Hut, R. New Observational Tools and Data Sources for Hydrology: Hydrological Data Unlocked by Tinkering (Master thesis) Delft University of Technology, Amsterdam, Netherlands, (2013). es_ES
dc.description.references Ali, A., Zanzinger, Z., Debose, D., Stephens, B. Open Source Building Science Sensors (OSBSS): A low-cost Arduino-based platform for long-term indoor environmental data collection. Building and Environment 100, 114-126, 2016. http://dx.doi.org/10.1016/j.buildenv.2016.02.010. es_ES
dc.description.references Mccarter W, Vennesland O. Sensor systems for use in reinforced concrete structures. Constrtion and Building Materials 18(6), 351–8, 2004. http://dx.doi.org/10.1016/j.conbuildmat.2004.03.008. es_ES
dc.description.references Ytong. Guía técnica. El hormigón celular YTONG, material de construcción. http://www.ytong.es/es/docs/GuiaTecnica_Ytong_2014.pdf. Visited on 2017-02-17. es_ES
dc.description.references AENOR. Specification for masonry units. Part 4: Autoclaved aerated concrete masonry units (UNE-EN 771-4) (2016). es_ES
dc.description.references Vercher, J., Cubel, F., Lerma, C., Mas, Á., Gil, E. Contributions of traditional façades to the thermal comfort. Earthen Architecture: Past, Present and Future. 2015 Taylor & Francis Group. ISBN 978-1-138-02711-4. es_ES
dc.description.references Ansys. 2013. Ansys 15.0 Help Manual. Ansys Inc. Ansys Academic Research V15.0. USA. es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem