Mostrar el registro sencillo del ítem
dc.contributor.author | He, Jinbao | es_ES |
dc.contributor.author | Fernández-Blanco, Ana Cristina | es_ES |
dc.contributor.author | Primo Arnau, Ana Maria | es_ES |
dc.contributor.author | García Gómez, Hermenegildo | es_ES |
dc.date.accessioned | 2020-10-30T04:32:51Z | |
dc.date.available | 2020-10-30T04:32:51Z | |
dc.date.issued | 2018-01-22 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/153696 | |
dc.description.abstract | [EN] MoS2 is a promising material to replace Pt-based catalysts for the hydrogen evolution reaction (HER), due to its excellent stability and high activity. In this work, MoS2 nanoparticles supported on graphitic carbon (about 20 nm) with a preferential 002 facet orientation have been prepared by pyrolysis of alginic acid films on quartz containing adsorbed (NH4)(2)MoS4 at 900 degrees C under Ar atmosphere. Although some variation of the electrocatalytic activity has been observed from batch to batch, the MoS2 sample exhibited activity for HER (a potential onset between 0.2 and 0.3 V vs. SCE), depending on the concentrations of (NH4)(2)MoS4 precursor used in the preparation process. The loading and particle size of MoS2, which correlate with the amount of exposed active sites in the sample, are the main factors influencing the electrocatalytic activity. | es_ES |
dc.description.sponsorship | Financial support by the Spanish Ministry of Economy and Competitiveness (Severo Ochoa and CTQ2015-69513-CO2-R1) and Generalidad Valenciana (Prometeo 2013/014) is gratefully acknowledged. Jinbao He thanks the Chinese Scholarship Council for supporting his PhD studies. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | MDPI AG | es_ES |
dc.relation | MINECO/CTQ2015-69513-CO2-R1 | es_ES |
dc.relation.ispartof | Materials | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Molybdenum disulfide | es_ES |
dc.subject | Oriented nanoparticles | es_ES |
dc.subject | Multilayer graphene films | es_ES |
dc.subject | Hydrogen evolution | es_ES |
dc.subject | Electrocatalyst | es_ES |
dc.subject.classification | QUIMICA ORGANICA | es_ES |
dc.title | One-Step Preparation of Large Area Films of Oriented MoS2 Nanoparticles on Multilayer Graphene and Its Electrocatalytic Activity for Hydrogen Evolution | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.3390/ma11010168 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//PROMETEO%2F2013%2F014/ES/SINTESIS DE GRAFENO Y DERIVADOS COMO SENSORES O CON PROPIEDADES OPTOELECTRONICAS/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Química - Departament de Química | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química | es_ES |
dc.description.bibliographicCitation | He, J.; Fernández-Blanco, AC.; Primo Arnau, AM.; García Gómez, H. (2018). One-Step Preparation of Large Area Films of Oriented MoS2 Nanoparticles on Multilayer Graphene and Its Electrocatalytic Activity for Hydrogen Evolution. Materials. 11(1):1-11. https://doi.org/10.3390/ma11010168 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.3390/ma11010168 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 11 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 11 | es_ES |
dc.description.issue | 1 | es_ES |
dc.identifier.eissn | 1996-1944 | es_ES |
dc.identifier.pmid | 29361756 | es_ES |
dc.identifier.pmcid | PMC5793666 | es_ES |
dc.relation.pasarela | S\406634 | es_ES |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.contributor.funder | China Scholarship Council | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.description.references | Chhowalla, M., Shin, H. S., Eda, G., Li, L.-J., Loh, K. P., & Zhang, H. (2013). The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nature Chemistry, 5(4), 263-275. doi:10.1038/nchem.1589 | es_ES |
dc.description.references | Lukowski, M. A., Daniel, A. S., Meng, F., Forticaux, A., Li, L., & Jin, S. (2013). Enhanced Hydrogen Evolution Catalysis from Chemically Exfoliated Metallic MoS2 Nanosheets. Journal of the American Chemical Society, 135(28), 10274-10277. doi:10.1021/ja404523s | es_ES |
dc.description.references | Voiry, D., Yamaguchi, H., Li, J., Silva, R., Alves, D. C. B., Fujita, T., … Chhowalla, M. (2013). Enhanced catalytic activity in strained chemically exfoliated WS2 nanosheets for hydrogen evolution. Nature Materials, 12(9), 850-855. doi:10.1038/nmat3700 | es_ES |
dc.description.references | Li, Y., Wang, H., Xie, L., Liang, Y., Hong, G., & Dai, H. (2011). MoS2Nanoparticles Grown on Graphene: An Advanced Catalyst for the Hydrogen Evolution Reaction. Journal of the American Chemical Society, 133(19), 7296-7299. doi:10.1021/ja201269b | es_ES |
dc.description.references | Latorre-Sánchez, M., Esteve-Adell, I., Primo, A., & García, H. (2015). Innovative preparation of MoS2–graphene heterostructures based on alginate containing (NH4)2MoS4 and their photocatalytic activity for H2 generation. Carbon, 81, 587-596. doi:10.1016/j.carbon.2014.09.093 | es_ES |
dc.description.references | Primo, A., Sánchez, E., Delgado, J. M., & García, H. (2014). High-yield production of N-doped graphitic platelets by aqueous exfoliation of pyrolyzed chitosan. Carbon, 68, 777-783. doi:10.1016/j.carbon.2013.11.068 | es_ES |
dc.description.references | Mateo, D., Esteve-Adell, I., Albero, J., Royo, J. F. S., Primo, A., & Garcia, H. (2016). 111 oriented gold nanoplatelets on multilayer graphene as visible light photocatalyst for overall water splitting. Nature Communications, 7(1). doi:10.1038/ncomms11819 | es_ES |
dc.description.references | Primo, A., Esteve-Adell, I., Blandez, J. F., Dhakshinamoorthy, A., Álvaro, M., Candu, N., … García, H. (2015). High catalytic activity of oriented 2.0.0 copper(I) oxide grown on graphene film. Nature Communications, 6(1). doi:10.1038/ncomms9561 | es_ES |
dc.description.references | Primo, A., Esteve-Adell, I., Coman, S. N., Candu, N., Parvulescu, V. I., & Garcia, H. (2015). One-Step Pyrolysis Preparation of 1.1.1 Oriented Gold Nanoplatelets Supported on Graphene and Six Orders of Magnitude Enhancement of the Resulting Catalytic Activity. Angewandte Chemie International Edition, 55(2), 607-612. doi:10.1002/anie.201508908 | es_ES |
dc.description.references | Primo, A., Atienzar, P., Sanchez, E., Delgado, J. M., & García, H. (2012). From biomass wastes to large-area, high-quality, N-doped graphene: catalyst-free carbonization of chitosan coatings on arbitrary substrates. Chemical Communications, 48(74), 9254. doi:10.1039/c2cc34978g | es_ES |
dc.description.references | Pedraza, F., Cruz-Reyes, J., Acosta, D., Yanez, M. J., Avalos-Borja, M., & Fuentes, S. (1993). Journal of Physics: Condensed Matter, 5(33A), A219-A220. doi:10.1088/0953-8984/5/33a/069 | es_ES |
dc.description.references | Li, H., Zhang, Q., Yap, C. C. R., Tay, B. K., Edwin, T. H. T., Olivier, A., & Baillargeat, D. (2012). From Bulk to Monolayer MoS2: Evolution of Raman Scattering. Advanced Functional Materials, 22(7), 1385-1390. doi:10.1002/adfm.201102111 | es_ES |
dc.description.references | Yan, Y., Ge, X., Liu, Z., Wang, J.-Y., Lee, J.-M., & Wang, X. (2013). Facile synthesis of low crystalline MoS2 nanosheet-coated CNTs for enhanced hydrogen evolution reaction. Nanoscale, 5(17), 7768. doi:10.1039/c3nr02994h | es_ES |
dc.description.references | Li, H., Tsai, C., Koh, A. L., Cai, L., Contryman, A. W., Fragapane, A. H., … Zheng, X. (2015). Activating and optimizing MoS2 basal planes for hydrogen evolution through the formation of strained sulphur vacancies. Nature Materials, 15(1), 48-53. doi:10.1038/nmat4465 | es_ES |
dc.description.references | Tsai, C., Chan, K., Nørskov, J. K., & Abild-Pedersen, F. (2015). Theoretical insights into the hydrogen evolution activity of layered transition metal dichalcogenides. Surface Science, 640, 133-140. doi:10.1016/j.susc.2015.01.019 | es_ES |