Mostrar el registro sencillo del ítem
dc.contributor.author | Gil Benso, Enrique | es_ES |
dc.contributor.author | Gómez-Martínez, Fernando | es_ES |
dc.contributor.author | Mas Tomas, Maria De Los Angeles | es_ES |
dc.contributor.author | Vercher Sanchis, José | es_ES |
dc.contributor.author | Lerma Elvira, Carlos | es_ES |
dc.contributor.author | López, Jorge | es_ES |
dc.date.accessioned | 2020-10-31T04:31:43Z | |
dc.date.available | 2020-10-31T04:31:43Z | |
dc.date.issued | 2019-01-25 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/153774 | |
dc.description.abstract | [EN] A low-cost system for the monitoring of strains in simple physical models within the field of Structural Engineering is presented, calibrated and discussed. It is based on Internet of Things and has reasonable accurate. This system only requires normally, economic devices as Arduino microcontroller and strain gauges. Several tests on a case study of a scaled-cantilevered aluminium beam with different loading are conducted. Governing parameters are calibrated and optimized when benchmarked against theoretical and experimental results obtained with a reference device. Results show great accuracy, however, the need of setting of the parameters campaign-by-campaign, especially aimed at dealing with thermal drift, becomes a shortcoming. Still, its minimum cost and user-friendly management makes it a suitable solution for different applications. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Trans Tech Publications | es_ES |
dc.relation.ispartof | Applied Mechanics and Materials (Online) | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Structural analysis | es_ES |
dc.subject | Experimental test | es_ES |
dc.subject | Internet of Things | es_ES |
dc.subject | Microcontroller | es_ES |
dc.subject | Strain gauges | es_ES |
dc.subject | Physical models | es_ES |
dc.subject.classification | MECANICA DE LOS MEDIOS CONTINUOS Y TEORIA DE ESTRUCTURAS | es_ES |
dc.subject.classification | CONSTRUCCIONES ARQUITECTONICAS | es_ES |
dc.title | Application of a low-cost strain monitoring system based on Internet of Things to the structural analysis of physical models | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.4028/www.scientific.net/AMM.887.633 | es_ES |
dc.rights.accessRights | Cerrado | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Construcciones Arquitectónicas - Departament de Construccions Arquitectòniques | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Mecánica de los Medios Continuos y Teoría de Estructuras - Departament de Mecànica dels Medis Continus i Teoria d'Estructures | es_ES |
dc.description.bibliographicCitation | Gil Benso, E.; Gómez-Martínez, F.; Mas Tomas, MDLA.; Vercher Sanchis, J.; Lerma Elvira, C.; López, J. (2019). Application of a low-cost strain monitoring system based on Internet of Things to the structural analysis of physical models. Applied Mechanics and Materials (Online). 887:633-640. https://doi.org/10.4028/www.scientific.net/AMM.887.633 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.4028/www.scientific.net/AMM.887.633 | es_ES |
dc.description.upvformatpinicio | 633 | es_ES |
dc.description.upvformatpfin | 640 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 887 | es_ES |
dc.identifier.eissn | 1662-7482 | es_ES |
dc.relation.pasarela | S\376818 | es_ES |
dc.description.references | N. Holmes, H. Mullen. Using model building in structural engineering to enhance understanding of construction principles and methods. Irish Journal of Academic Practice 2(1):1-21 (2013). | es_ES |
dc.description.references | J. Gubbi, R. Buyya, S. Marusic, M. Palaniswami. Internet of Things: A vision, architectural elements, and future directions. Future generation computer systems 29(7):1645-1660 (2013). | es_ES |
dc.description.references | Vishay. P3 Strain Indicator and Recorder (2008): http://www.vishay.com/docs/11102/p.3.pdf. | es_ES |
dc.description.references | J. López Pérez. Diseño de un Sistema de extensometría y su calibración. Degree Dissertation, Degree in Architecture, Polytechnic University of Valencia, Spain (2016, in Spanish). | es_ES |
dc.description.references | E. Gil, F. Gómez, A. Mas, J. Vercher, C. Lerma. Educational application of deformation monitoring through strain gauges and Internet of Things. 11th annual International Technology, Education and Development Conference, INTED 2017, Valencia, Spain, March 6-8 (2017). | es_ES |
dc.description.references | K. Hoffmann. An introduction to measurement using strain gages. H. Baldwin, ed. (1989). | es_ES |
dc.description.references | VV.AA. An Arduino library to interface the Avia Semiconductor HX711 24-Bit Analog-to-Digital Converter (ADC) for Weight Scales (2016). Available at github.com/bogde/HX711. | es_ES |
dc.description.references | L. Guerriero, G. Guerriero, G. Grelle, F.M. Guadagno, P. Revellino. Brief communication: A low cost Arduino®-based wire extensometer for earth flow monitoring. Natural Hazards and Earth System Sciences. | es_ES |