- -

Root hydrotropism is controlled via a cortex-specific growth mechanism

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Root hydrotropism is controlled via a cortex-specific growth mechanism

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Dietrich, Daniela es_ES
dc.contributor.author Pang, Lei es_ES
dc.contributor.author Kobayashi, Akie es_ES
dc.contributor.author Fozard, John A. es_ES
dc.contributor.author Boudolf, Veronique es_ES
dc.contributor.author Bhosale, Rahul es_ES
dc.contributor.author Nguyen, Tuan es_ES
dc.contributor.author Hiratsuka, Sotaro es_ES
dc.contributor.author Fujii, Nobuharu es_ES
dc.contributor.author Miyazawa, Yutaka es_ES
dc.contributor.author Bae, Tae-Woong es_ES
dc.contributor.author Wells, Darren M. es_ES
dc.contributor.author Owen, Markus R. es_ES
dc.contributor.author Band, Leah R. es_ES
dc.contributor.author Dyson, Rosemary J. es_ES
dc.contributor.author Rodríguez Egea, Pedro Luís es_ES
dc.date.accessioned 2020-10-31T04:31:48Z
dc.date.available 2020-10-31T04:31:48Z
dc.date.issued 2017-06 es_ES
dc.identifier.uri http://hdl.handle.net/10251/153775
dc.description.abstract [EN] Plants can acclimate by using tropisms to link the direction of growth to environmental conditions. Hydrotropism allows roots to forage for water, a process known to depend on abscisic acid (ABA) but whose molecular and cellular basis remains unclear. Here we show that hydrotropism still occurs in roots after laser ablation removed the meristem and root cap. Additionally, targeted expression studies reveal that hydrotropism depends on the ABA signalling kinase SnRK2.2 and the hydrotropism-specific MIZ1, both acting specifically in elongation zone cortical cells. Conversely, hydrotropism, but not gravitropism, is inhibited by preventing differential cell-length increases in the cortex, but not in other cell types. We conclude that root tropic responses to gravity and water are driven by distinct tissue-based mechanisms. In addition, unlike its role in root gravitropism, the elongation zone performs a dual function during a hydrotropic response, both sensing a water potential gradient and subsequently undergoing differential growth. es_ES
dc.description.sponsorship The authors thank C. Howells, K. Swarup and M. Whitworth for technical assistance, J.-K. Zhu for providing snrk2.2 snrk2.3 seeds, W. Grunewald for pDONR-L1-GAL4-VP16-R2 and S. Tsukinoki for generating WER: MIZ1-GFP(HSPter) and PIN2: MIZ1-GFP(HSPter) transgenic plants and acknowledge the following funding agencies for financial support: D.D., J.F., R.A., T.N., D.W., S.T.,C.S., S.M., M.R.O., L.R.B., R.D., O.J., J.K., J.R., T.B. and M.J.B. thank the Biological and Biotechnology Science Research Council (BBSRC) for responsive mode and CISB awards to the Centre for Plant Integrative Biology; D.W., C. S., S. M., M.R.O., J.K., T.P. and M.J.B. thank the European Research Council (ERC) for FUTUREROOTS project funding; L.R.B. thanks the Leverhulme Trust for an Early Career Fellowship; V.B., R.B. and L.D.V. are supported by grants of the Research Foundation Flanders (G. 002911N). R.B. and M. J.B. thank the Royal Society for Newton and Wolfson Research Fellowship awards; R.A., T.I.B. and M. J.B. thank the FP7 Marie Curie Fellowship Scheme; R.D. thanks the Engineering and Physical Sciences Research Council, J.D. and M. J.B. thank the GII scheme; and V.B., R.B., L.D.V. and M. J.B. thank the Interuniversity Attraction Poles Programme (IUAP P7/29 "MARS"), initiated by the Belgian Science Policy Office. R.B.P. was funded by grants from the Knut and AliceWallenberg Foundation. This work was also supported by a Grant-in-Aid for Scientific Research on Innovative Areas (No. 22120004) from the Ministry of Education, Culture, Sports, Science and Technology (MEXT) of Japan to H.T., a Grant-in-Aid for Young Scientists (B) (No. 26870057) from the Japan Society for the Promotion of Science (JSPS) to A. K., a Grant-in-Aid for Scientific Research on Innovative Areas (No. 22120002) from the Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan to A.N., a Grant-in-Aid for Scientific Research on Innovative Areas (No. 22120010) from the Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan to Y.H. and the Funding Program for Next-Generation World-Leading Researchers (GS002) to Y.M.L.P. was financially supported by a scholarship from the Japanese government. T.-W.B. was financially supported by the Funding Program for Next-Generation World-Leading Researchers (GS002) and the Grant-in-Aid for Scientific Research on Innovative Areas (No. 22120004) es_ES
dc.language Inglés es_ES
dc.publisher Nature Publishing Group es_ES
dc.relation.ispartof Nature Plants (Online) es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject.classification BIOQUIMICA Y BIOLOGIA MOLECULAR es_ES
dc.title Root hydrotropism is controlled via a cortex-specific growth mechanism es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1038/nplants.2017.57 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/FWO//G.002911N/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/BELSPO//IUAP P7%2F29/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MEXT//22120004/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MEXT//26870057/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MEXT//22120002/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MEXT//22120010/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MEXT//GS002/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes es_ES
dc.description.bibliographicCitation Dietrich, D.; Pang, L.; Kobayashi, A.; Fozard, JA.; Boudolf, V.; Bhosale, R.; Nguyen, T.... (2017). Root hydrotropism is controlled via a cortex-specific growth mechanism. Nature Plants (Online). 3(6):1-8. https://doi.org/10.1038/nplants.2017.57 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1038/nplants.2017.57 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 8 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 3 es_ES
dc.description.issue 6 es_ES
dc.identifier.eissn 2055-0278 es_ES
dc.identifier.pmid 28481327 es_ES
dc.relation.pasarela S\357349 es_ES
dc.contributor.funder Belgian Federal Science Policy Office es_ES
dc.contributor.funder Research Foundation Flanders es_ES
dc.contributor.funder Ministry of Education, Culture, Sports, Science and Technology, Japón es_ES
dc.description.references Blancaflor, E. B., Fasano, J. M. & Gilroy, S. Mapping the functional roles of cap cells in the response of Arabidopsis primary roots to gravity. Plant Physiol. 116, 213–222 (1998). es_ES
dc.description.references Ottenschlager, I. et al. Gravity-regulated differential auxin transport from columella to lateral root cap cells. Proc. Natl Acad. Sci. USA 100, 2987–2991 (2003). es_ES
dc.description.references Swarup, R. et al. Root gravitropism requires lateral root cap and epidermal cells for transport and response to a mobile auxin signal. Nat. Cell Biol. 7, 1057–1065 (2005). es_ES
dc.description.references Rahman, A. et al. Gravitropism of Arabidopsis thaliana roots requires the polarization of PIN2 toward the root tip in meristematic cortical cells. Plant Cell 22, 1762–1776 (2010). es_ES
dc.description.references Friml, J. Subcellular trafficking of PIN auxin efflux carriers in auxin transport. Eur. J. Cell Biol. 89, 231–235 (2010). es_ES
dc.description.references Jaffe, M. J., Takahashi, H. & Biro, R. L. A pea mutant for the study of hydrotropism in roots. Science 230, 445–447 (1985). es_ES
dc.description.references Takahashi, H. & Suge, H. Root hydrotropism of an agravitropic pea mutant, ageotropum. Physiol. Plant. 82, 24–31 (1991). es_ES
dc.description.references Takahashi, H. & Scott, T. K. Intensity of hydrostimulation for the induction of root hydrotropism and its sensing by the root cap. Plant Cell Environ. 16, 99–103 (1993). es_ES
dc.description.references Miyazawa, Y. et al. Effects of locally targeted heavy-ion and laser microbeam on root hydrotropism in Arabidopsis thaliana. J. Radiat. Res. 49, 373–379 (2008). es_ES
dc.description.references Miyamoto, N., Ookawa, T., Takahashi, H. & Hirasawa, T. Water uptake and hydraulic properties of elongating cells in hydrotropically bending roots of Pisum sativum L. Plant Cell Physiol. 43, 393–401 (2002). es_ES
dc.description.references Kaneyasu, T. et al. Auxin response, but not its polar transport, plays a role in hydrotropism of Arabidopsis roots. J. Exp. Bot. 58, 1143–1150 (2007). es_ES
dc.description.references Takahashi, N., Goto, N., Okada, K. & Takahashi, H. Hydrotropism in abscisic acid, wavy, and gravitropic mutants of Arabidopsis thaliana. Planta 216, 203–211 (2002). es_ES
dc.description.references Takahashi, H., Miyazawa, Y. & Fujii, N. Hormonal interactions during root tropic growth: hydrotropism versus gravitropism. Plant Mol. Biol. 69, 489–502 (2009). es_ES
dc.description.references Shkolnik, D., Krieger, G., Nuriel, R. & Fromm, H. Hydrotropism: root bending does not require auxin redistribution. Mol. Plant 9, 757–759 (2016). es_ES
dc.description.references Shkolnik, D. & Fromm, H. The Cholodny-Went theory does not explain hydrotropism. Plant Sci. 252, 400–403 (2016). es_ES
dc.description.references Antoni, R. et al. PYRABACTIN RESISTANCE1-LIKE8 plays an important role for the regulation of abscisic acid signaling in root. Plant Physiol. 161, 931–941 (2013). es_ES
dc.description.references Kobayashi, A. et al. A gene essential for hydrotropism in roots. Proc. Natl Acad. Sci. USA 104, 4724–4729 (2007). es_ES
dc.description.references Moriwaki, T., Miyazawa, Y., Fujii, N. & Takahashi, H. Light and abscisic acid signalling are integrated by MIZ1 gene expression and regulate hydrotropic response in roots of Arabidopsis thaliana. Plant Cell Environ. 35, 1359–1368 (2012). es_ES
dc.description.references Moriwaki, T., Miyazawa, Y., Kobayashi, A. & Takahashi, H. Molecular mechanisms of hydrotropism in seedling roots of Arabidopsis thaliana (Brassicaceae). Am. J. Bot. 100, 25–34 (2013). es_ES
dc.description.references Cutler, S. R., Rodriguez, P. L., Finkelstein, R. R. & Abrams, S. R. Abscisic acid: Emergence of a core signaling network. Annu. Rev. Plant Biol. 61, 651–679 (2010). es_ES
dc.description.references Ma, Y. et al. Regulators of PP2C phosphatase activity function as abscisic acid sensors. Science 324, 1064–1068 (2009). es_ES
dc.description.references Park, S. Y. et al. Abscisic acid inhibits type 2C protein phosphatases via the PYR/PYL family of START proteins. Science 324, 1068–1071 (2009). es_ES
dc.description.references Fujii, H. et al. In vitro reconstitution of an abscisic acid signalling pathway. Nature 462, 660–664 (2009). es_ES
dc.description.references Fujii, H., Verslues, P. E. & Zhu, J. K. Identification of two protein kinases required for abscisic acid regulation of seed germination, root growth, and gene expression in Arabidopsis. Plant Cell 19, 485–494 (2007). es_ES
dc.description.references Antoni, R., Dietrich, D., Bennett, M. J. & Rodriguez, P. L. Hydrotropism: analysis of the root response to a moisture gradient. Methods Mol. Biol. 1398, 3–9 (2016). es_ES
dc.description.references Kline, K. G., Barrett-Wilt, G. A. & Sussman, M. R. In planta changes in protein phosphorylation induced by the plant hormone abscisic acid. Proc. Natl Acad. Sci. USA 107, 15986–15991 (2010). es_ES
dc.description.references Wang, P. et al. Quantitative phosphoproteomics identifies SnRK2 protein kinase substrates and reveals the effectors of abscisic acid action. Proc. Natl Acad. Sci. USA 110, 11205–11210 (2013). es_ES
dc.description.references Casamitjana-Martinez, E. et al. Root-specific CLE19 overexpression and the sol1/2 suppressors implicate a CLV-like pathway in the control of Arabidopsis root meristem maintenance. Curr. Biol. 13, 1435–1441 (2003). es_ES
dc.description.references Willemsen, V. et al. The NAC domain transcription factors FEZ and SOMBRERO control the orientation of cell division plane in Arabidopsis root stem cells. Dev. Cell 15, 913–922 (2008). es_ES
dc.description.references Lee, M. M. & Schiefelbein, J. WEREWOLF, a MYB-related protein in Arabidopsis, is a position-dependent regulator of epidermal cell patterning. Cell 99, 473–483 (1999). es_ES
dc.description.references Wysocka-Diller, J. W., Helariutta, Y., Fukaki, H., Malamy, J. E. & Benfey, P. N. Molecular analysis of SCARECROW function reveals a radial patterning mechanism common to root and shoot. Development 127, 595–603 (2000). es_ES
dc.description.references Heidstra, R., Welch, D. & Scheres, B. Mosaic analyses using marked activation and deletion clones dissect Arabidopsis SCARECROW action in asymmetric cell division. Genes & Dev. 18, 1964–1969 (2004). es_ES
dc.description.references Lee, J. Y. et al. Transcriptional and posttranscriptional regulation of transcription factor expression in Arabidopsis roots. Proc. Natl Acad. Sci. USA 103, 6055–6060 (2006). es_ES
dc.description.references Ondzighi-Assoume, C. A., Chakraborty, S. & Harris, J. M. Environmental nitrate stimulates abscisic acid accumulation in Arabidopsis root tips by releasing it from inactive stores. Plant Cell 28, 729–745 (2016). es_ES
dc.description.references Sharp, R. E., Wu, Y. J., Voetberg, G. S., Saab, I. N. & Lenoble, M. E. Confirmation that abscisic-acid accumulation is required for maize primary root elongation at low water potentials. J. Exp. Bot. 45, 1743–1751 (1994). es_ES
dc.description.references Xu, W. F. et al. Abscisic acid accumulation modulates auxin transport in the root tip to enhance proton secretion for maintaining root growth under moderate water stress. New Phytol. 197, 139–150 (2013). es_ES
dc.description.references Rowe, J. H., Topping, J. F., Liu, J. & Lindsey, K. Abscisic acid regulates root growth under osmotic stress conditions via an interacting hormonal network with cytokinin, ethylene and auxin. New Phytol. 211, 225–239 (2016). es_ES
dc.description.references Dyson, R. J. et al. Mechanical modelling quantifies the functional importance of outer tissue layers during root elongation and bending. New Phytol. 202, 1212–1222 (2014). es_ES
dc.description.references Churchman, M. L. et al. SIAMESE, a plant-specific cell cycle regulator, controls endoreplication onset in Arabidopsis thaliana. Plant Cell 18, 3145–3157 (2006). es_ES
dc.description.references Brunoud, G. et al. A novel sensor to map auxin response and distribution at high spatio-temporal resolution. Nature 482, 103–106 (2012). es_ES
dc.description.references Band, L. R. et al. Root gravitropism is regulated by a transient lateral auxin gradient controlled by a tipping-point mechanism. Proc. Natl Acad. Sci. USA 109, 4668–4673 (2012). es_ES
dc.description.references Mullen, J. L., Ishikawa, H. & Evans, M. L. Analysis of changes in relative elemental growth rate patterns in the elongation zone of Arabidopsis roots upon gravistimulation. Planta 206, 598–603 (1998). es_ES
dc.description.references Krieger, G., Shkolnik, D., Miller, G. & Fromm, H. Reactive oxygen species tune root tropic responses. Plant Physiol. 172, 1209–1220 (2016). es_ES
dc.description.references Wells, D. M. et al. Recovering the dynamics of root growth and development using novel image acquisition and analysis methods. Philos. T. R. Soc. B 367, 1517–1524 (2012). es_ES
dc.description.references French, A. P. et al. Identifying biological landmarks using a novel cell measuring image analysis tool: Cell-o-Tape. Plant Methods 8, 7 (2012). es_ES
dc.description.references Baskin, T. I. Patterns of root growth acclimation: constant processes, changing boundaries. WIREs Dev. Biol. 2, 65–73 (2013). es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem