Mostrar el registro sencillo del ítem
dc.contributor.author | Zaffino, R. | es_ES |
dc.contributor.author | Seimetz, Michael | es_ES |
dc.contributor.author | Ruiz-de la Cruz, A. | es_ES |
dc.contributor.author | Sánchez, I. | es_ES |
dc.contributor.author | Mur, P. | es_ES |
dc.contributor.author | Quirión, D. | es_ES |
dc.contributor.author | Bellido-Millán, Pablo Jesús | es_ES |
dc.contributor.author | Lera, Roberto | es_ES |
dc.contributor.author | Martín, L. | es_ES |
dc.contributor.author | Benlliure, J. | es_ES |
dc.contributor.author | Benlloch Baviera, Jose María | es_ES |
dc.contributor.author | Lozano, M. | es_ES |
dc.contributor.author | Pellegrini, G. | es_ES |
dc.date.accessioned | 2020-10-31T04:32:27Z | |
dc.date.available | 2020-10-31T04:32:27Z | |
dc.date.issued | 2018-04 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/153788 | |
dc.description.abstract | [EN] Thin layer membranes with controllable features and material arrangements are often used as target materials for laser driven particle accelerators. Reduced cost, large scale fabrication of such membranes with high reproducibility, and good stability are central for the efficient production of proton beams. These characteristics are of growing importance in the context of advanced laser light sources where increased repetition rates boost the need for consumable targets with design and properties adjusted to study the different phenomena arising in ultra-intense laser-plasma interaction. Wepresent the fabrication of sub-micrometric thin-layer gold or aluminum membranes in a silicon wafer frame by using nano/micro-electro-mechanical-system (N/MEMS) processing which are suitable for rapid patterning and machining of many samples at the same time and allowing for high-throughput production of targets for laser-driven acceleration. Obtained targets were tested for laserproton acceleration through the Target Normal Sheath Acceleration mechanism (TNSA) in a series of experiments carried out on a purpose-made table-top Ti:Sa running at 3 TW peak power and 10 Hz diode pump rate with a contrast over ASE of 10(8) | es_ES |
dc.description.sponsorship | The authors highly appreciate the collaboration of Radosys (Budapest) which provided CR-39 detector material, etching bath, and readout equipment. This project has been financed by the Spanish Ministry for Economy and Competitiveness within the Retos-Colaboracion 2015 initiative, ref. RTC-2015-3278-1. P Mur has received a grant of the Garantia Juvenil 2015 program. This work has made use of the Spanish ICTS Network MICRONANOFABS partially supported by MEINCOM. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | IOP Publishing | es_ES |
dc.relation.ispartof | Journal of Physics Communications | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Laser-plasma | es_ES |
dc.subject | Accelerator | es_ES |
dc.subject | MEMS | es_ES |
dc.subject | Table-top | es_ES |
dc.subject | Membrane | es_ES |
dc.subject | Proton beams | es_ES |
dc.title | Efficient proton acceleration from a 3 TW table-top laser interacting with submicrometric mass-produced solid targets | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1088/2399-6528/aabc25 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//RTC-2015-3278-1/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto de Instrumentación para Imagen Molecular - Institut d'Instrumentació per a Imatge Molecular | es_ES |
dc.description.bibliographicCitation | Zaffino, R.; Seimetz, M.; Ruiz-De La Cruz, A.; Sánchez, I.; Mur, P.; Quirión, D.; Bellido-Millán, PJ.... (2018). Efficient proton acceleration from a 3 TW table-top laser interacting with submicrometric mass-produced solid targets. Journal of Physics Communications. 2(4):1-6. https://doi.org/10.1088/2399-6528/aabc25 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1088/2399-6528/aabc25 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 6 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 2 | es_ES |
dc.description.issue | 4 | es_ES |
dc.identifier.eissn | 2399-6528 | es_ES |
dc.relation.pasarela | S\406206 | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.description.references | Borghesi, M., Campbell, D. H., Schiavi, A., Haines, M. G., Willi, O., MacKinnon, A. J., … Bulanov, S. (2002). Electric field detection in laser-plasma interaction experiments via the proton imaging technique. Physics of Plasmas, 9(5), 2214-2220. doi:10.1063/1.1459457 | es_ES |
dc.description.references | Ledingham, K., Bolton, P., Shikazono, N., & Ma, C.-M. (2014). Towards Laser Driven Hadron Cancer Radiotherapy: A Review of Progress. Applied Sciences, 4(3), 402-443. doi:10.3390/app4030402 | es_ES |
dc.description.references | Spindloe, C., Arthur, G., Hall, F., Tomlinson, S., Potter, R., Kar, S., … Tolley, M. K. (2016). High volume fabrication of laser targets using MEMS techniques. Journal of Physics: Conference Series, 713, 012002. doi:10.1088/1742-6596/713/1/012002 | es_ES |
dc.description.references | Schomburg, W. K. (2011). Thin Films. RWTHedition, 9-20. doi:10.1007/978-3-642-19489-4_4 | es_ES |
dc.description.references | Bellido, P., Lera, R., Seimetz, M., Cruz, A. R. la, Torres-Peirò, S., Galán, M., … Benlloch, J. M. (2017). Characterization of protons accelerated from a 3 TW table-top laser system. Journal of Instrumentation, 12(05), T05001-T05001. doi:10.1088/1748-0221/12/05/t05001 | es_ES |
dc.description.references | Mayer, M. (1999). SIMNRA, a simulation program for the analysis of NRA, RBS and ERDA. AIP Conference Proceedings. doi:10.1063/1.59188 | es_ES |
dc.description.references | Ceccotti, T., Lévy, A., Popescu, H., Réau, F., D’Oliveira, P., Monot, P., … Martin, P. (2007). Proton Acceleration with High-Intensity Ultrahigh-Contrast Laser Pulses. Physical Review Letters, 99(18). doi:10.1103/physrevlett.99.185002 | es_ES |
dc.description.references | Dollar, F., Reed, S. A., Matsuoka, T., Bulanov, S. S., Chvykov, V., Kalintchenko, G., … Maksimchuk, A. (2013). High-intensity laser-driven proton acceleration enhancement from hydrogen containing ultrathin targets. Applied Physics Letters, 103(14), 141117. doi:10.1063/1.4824361 | es_ES |
dc.description.references | Neely, D., Foster, P., Robinson, A., Lindau, F., Lundh, O., Persson, A., … McKenna, P. (2006). Enhanced proton beams from ultrathin targets driven by high contrast laser pulses. Applied Physics Letters, 89(2), 021502. doi:10.1063/1.2220011 | es_ES |
dc.description.references | Green, J. S., Carroll, D. C., Brenner, C., Dromey, B., Foster, P. S., Kar, S., … Zepf, M. (2010). Enhanced proton flux in the MeV range by defocused laser irradiation. New Journal of Physics, 12(8), 085012. doi:10.1088/1367-2630/12/8/085012 | es_ES |
dc.description.references | Giuffrida, L., Svensson, K., Psikal, J., Dalui, M., Ekerfelt, H., Gallardo Gonzalez, I., … Margarone, D. (2017). Manipulation of laser-accelerated proton beam profiles by nanostructured and microstructured targets. Physical Review Accelerators and Beams, 20(8). doi:10.1103/physrevaccelbeams.20.081301 | es_ES |