- -

Identification of Linearized RMS-Voltage Dip Patterns Based on Clustering in Renewable Plants

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Identification of Linearized RMS-Voltage Dip Patterns Based on Clustering in Renewable Plants

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author García-Sánchez, Tania María es_ES
dc.contributor.author Gómez-Lázaro, Emilio es_ES
dc.contributor.author Muljadi, Edward es_ES
dc.contributor.author Kessler, Mathieu es_ES
dc.contributor.author Muñoz-Benavente, Irene es_ES
dc.contributor.author Molina-García, Angel es_ES
dc.date.accessioned 2020-10-31T04:32:42Z
dc.date.available 2020-10-31T04:32:42Z
dc.date.issued 2018-03-27 es_ES
dc.identifier.issn 1751-8687 es_ES
dc.identifier.uri http://hdl.handle.net/10251/153793
dc.description.abstract [EN] Generation units connected to the grid are currently required to meet low-voltage ride-through (LVRT) requirements. In most developed countries, these requirements also apply to renewable sources, mainly wind power plants and photovoltaic installations connected to the grid. This study proposes an alternative characterisation solution to classify and visualise a large number of collected events in light of current limits and requirements. The authors' approach is based on linearised root-mean-square-(RMS)-voltage trajectories, taking into account LRVT requirements, and a clustering process to identify the most likely pattern trajectories. The proposed solution gives extensive information on an event's severity by providing a simple but complete visualisation of the linearised RMS-voltage patterns. In addition, these patterns are compared to current LVRT requirements to determine similarities or discrepancies. A large number of collected events can then be automatically classified and visualised for comparative purposes. Real disturbances collected from renewable sources in Spain are used to assess the proposed solution. Extensive results and discussions are also included in this study. es_ES
dc.description.sponsorship The authors thank the financial support from the 'Ministerio de Economia y Competitividad' (Spain) and the European Union - ENE2016-78214-C2-2-R, Fulbright/Spanish Ministry of Education Visiting Scholar - PRX14/00694. This work was also supported by the US Department of Energy under contract no. DE-AC36-08-GO28308 with the National Renewable Energy Laboratory es_ES
dc.language Inglés es_ES
dc.publisher Institution of Electrical Engineers es_ES
dc.relation.ispartof IET Generation Transmission & Distribution es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Clustering es_ES
dc.subject Voltage measurement es_ES
dc.subject Pattern recognition es_ES
dc.subject.classification INGENIERIA ELECTRICA es_ES
dc.title Identification of Linearized RMS-Voltage Dip Patterns Based on Clustering in Renewable Plants es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1049/iet-gtd.2017.0474 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//ENE2016-78214-C2-2-R/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MECD//PRX14%2F00694/ES/PRX14%2F00694/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/DOE//DE-AC36-08-GO28308/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Eléctrica - Departament d'Enginyeria Elèctrica es_ES
dc.description.bibliographicCitation García-Sánchez, TM.; Gómez-Lázaro, E.; Muljadi, E.; Kessler, M.; Muñoz-Benavente, I.; Molina-García, A. (2018). Identification of Linearized RMS-Voltage Dip Patterns Based on Clustering in Renewable Plants. IET Generation Transmission & Distribution. 12(6):1256-1262. https://doi.org/10.1049/iet-gtd.2017.0474 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1049/iet-gtd.2017.0474 es_ES
dc.description.upvformatpinicio 1256 es_ES
dc.description.upvformatpfin 1262 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 12 es_ES
dc.description.issue 6 es_ES
dc.relation.pasarela S\345199 es_ES
dc.contributor.funder Ministerio de Educación es_ES
dc.contributor.funder U.S. Department of Energy es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Craciun B. Kerekes T. Sera D.et al.: ‘Overview of recent grid codes for PV power integration’.13th Int. Conf. on Optimization of Electrical and Electronic Equipment (OPTIM) 2012 May2012 pp.959–965 es_ES
dc.description.references ‘World Energy Outlook 2012’. Technical Report International Egency Agency (IEA) 2012. Available atwww.iea.org es_ES
dc.description.references Behrens C.E.: ‘Energy policy: 113th congress issues’.Congressional Research Service 2013 es_ES
dc.description.references Lopes, J. A. P., Hatziargyriou, N., Mutale, J., Djapic, P., & Jenkins, N. (2007). Integrating distributed generation into electric power systems: A review of drivers, challenges and opportunities. Electric Power Systems Research, 77(9), 1189-1203. doi:10.1016/j.epsr.2006.08.016 es_ES
dc.description.references Glassmire, J., Komor, P., & Lilienthal, P. (2012). Electricity demand savings from distributed solar photovoltaics. Energy Policy, 51, 323-331. doi:10.1016/j.enpol.2012.08.022 es_ES
dc.description.references Carvalho, D., Wemans, J., Lima, J., & Malico, I. (2011). Photovoltaic energy mini-generation: Future perspectives for Portugal. Energy Policy, 39(9), 5465-5473. doi:10.1016/j.enpol.2011.05.016 es_ES
dc.description.references Battaglini, A., Komendantova, N., Brtnik, P., & Patt, A. (2012). Perception of barriers for expansion of electricity grids in the European Union. Energy Policy, 47, 254-259. doi:10.1016/j.enpol.2012.04.065 es_ES
dc.description.references ‘European Commission 2010a. Energy 2020. A strategy for competitive sustainable and secure energy’. Technical Report Brussels November2011 es_ES
dc.description.references Beurskens P.V.L.W.M. Hekkenberg M.: ‘Renewable energy projections as published in the national renewable energy action plans of the european member states’. Technical Report European Environment Agency (EEA) November2011 es_ES
dc.description.references Coll-Mayor, D., Paget, M., & Lightner, E. (2007). Future intelligent power grids: Analysis of the vision in the European Union and the United States. Energy Policy, 35(4), 2453-2465. doi:10.1016/j.enpol.2006.09.001 es_ES
dc.description.references Passey, R., Spooner, T., MacGill, I., Watt, M., & Syngellakis, K. (2011). The potential impacts of grid-connected distributed generation and how to address them: A review of technical and non-technical factors. Energy Policy, 39(10), 6280-6290. doi:10.1016/j.enpol.2011.07.027 es_ES
dc.description.references Sangroniz N. Mora J.A. Teixeira M.D.: ‘Review of international grid codes for wind generation’ 2009 es_ES
dc.description.references ‘Global Market Outlook for Photovoltaics Until 2016’. Technical Report European Photovoltaic Industry Association 2012. Available atwww.epia.org es_ES
dc.description.references Kim S. Bollen M.: ‘Towards the development of a set of grid code requirements for wind farms: transient reactive power requirements’. Technical Report Available as Elforsk Report 13 : 04. Part 3 Report of Vindforsk Project V‐369 Vindforsk III January2013 es_ES
dc.description.references Tsili, M., & Papathanassiou, S. (2009). A review of grid code technical requirements for wind farms. IET Renewable Power Generation, 3(3), 308. doi:10.1049/iet-rpg.2008.0070 es_ES
dc.description.references Hossain, J., & Mahmud, A. (Eds.). (2014). Renewable Energy Integration. Green Energy and Technology. doi:10.1007/978-981-4585-27-9 es_ES
dc.description.references Sourkounis C. Tourou P.: ‘Grid code requirements for wind power integration in Europe’.Conf. Papers in Energy 2013 pp.1–9 es_ES
dc.description.references Voltage Ride-Through Capability Verification of Wind Turbines With Fully-Rated Converters Using Reachability Analysis. (2014). IEEE Transactions on Energy Conversion, 29(2), 392-405. doi:10.1109/tec.2013.2295168 es_ES
dc.description.references Mohseni, M., & Islam, S. M. (2012). Review of international grid codes for wind power integration: Diversity, technology and a case for global standard. Renewable and Sustainable Energy Reviews, 16(6), 3876-3890. doi:10.1016/j.rser.2012.03.039 es_ES
dc.description.references ‘Royal Decree 1565/2010 by which regulates and modifies certain aspects of the activity of production of electric energy in special regime. (In spanish)’. Technical Report November2010 es_ES
dc.description.references Sourkounis C. Tourou P.: ‘Grid code requirements for wind power integration in Europe’.Conf. Papers in Science 2013 es_ES
dc.description.references Jiménez, F., Gómez-Lázaro, E., Fuentes, J. A., Molina-García, A., & Vigueras-Rodríguez, A. (2011). Validation of a double fed induction generator wind turbine model and wind farm verification following the Spanish grid code. Wind Energy, 15(4), 645-659. doi:10.1002/we.498 es_ES
dc.description.references Montoro D.: ‘Recommendations for unified technical regulations for grid‐connected PV systems’. Technical Report SUNRISE project – European Photovoltaic Industry Association the European Construction Industry Federation the European Association of Electrical Contractors International Union of Architects 2009. Available athttp://www.pvsunrise.eu/ es_ES
dc.description.references Merino, J., Mendoza-Araya, P., & Veganzones, C. (2014). State of the Art and Future Trends in Grid Codes Applicable to Isolated Electrical Systems. Energies, 7(12), 7936-7954. doi:10.3390/en7127936 es_ES
dc.description.references deAlmeida P. Barbosa P. Duque C.et al.: ‘Grid connection considerations for the integration of PV and wind sources’.IEEE 16th Int. Conf. on Harmonics and Quality of Power (ICHQP) May2014 pp.6–9 es_ES
dc.description.references ‘Network code requirements for grid connection applicable to all generators’. Technical Report European Network of Transmission System Operators for Electricity ENTSO‐E October2013. Available athttps://www.entsoe.eu/ es_ES
dc.description.references Kagan N. Ferrari E. Matsuo N.et al.: ‘Influence of rms variation measurement protocols on electrical system performance indices for voltage sags and swells’.Proc. Ninth Int. Conf. on Harmonics and Quality of Power 2000 2000 vol.3 pp.790–795 es_ES
dc.description.references Bollen, M. H. J. (2003). Algorithms for characterizing measured three-phase unbalanced voltage dips. IEEE Transactions on Power Delivery, 18(3), 937-944. doi:10.1109/tpwrd.2003.813879 es_ES
dc.description.references Bollen M.H.: ‘Comparing voltage dip survey results’.Power Engineering Society Winter Meeting 2002 2002 vol.2 pp.1130–1134 es_ES
dc.description.references Moreno‐Muñoz A. de laRosa J.: ‘Voltage sag in highly automated factories’.Industry Applications Society Annual Meeting IAS'08 2008 pp.1–6 es_ES
dc.description.references Gomez-Lazaro, E., Fuentes, J. A., Molina-Garcia, A., & Canas-Carreton, M. (2009). Characterization and Visualization of Voltage Dips in Wind Power Installations. IEEE Transactions on Power Delivery, 24(4), 2071-2078. doi:10.1109/tpwrd.2009.2027513 es_ES
dc.description.references Gunther, E. W., & Mebta, H. (1995). A survey of distribution system power quality-preliminary results. IEEE Transactions on Power Delivery, 10(1), 322-329. doi:10.1109/61.368382 es_ES
dc.description.references Belloni F. Chiappa C. Chiumeo R.et al.: ‘Voltage dip measurements along MV lines vs primary substations measurements’.Int. Conf. on Renewable Energies and Power Quality (ICREPQ'12) March2012 pp.28–30 es_ES
dc.description.references Garcia-Sanchez, T., Gomez-Lazaro, E., Muljadi, E., Kessler, M., & Molina-Garcia, A. (2016). Statistical and Clustering Analysis for Disturbances: A Case Study of Voltage Dips in Wind Farms. IEEE Transactions on Power Delivery, 31(6), 2530-2537. doi:10.1109/tpwrd.2016.2522946 es_ES
dc.description.references Barrera Nunez V. Melendez Frigola J. Herraiz Jaramillo S.: ‘A survey on voltage sag events in power systems’.IEEE/PES Transmission and Distribution Conf. and Exposition: Latin America 2008 August2008 pp.1–3 es_ES
dc.description.references ‘IEEE Standard 519‐1992: Recommended practices and requirements for harmonic control in electrical power systems’. Technical Report 1993. Available athttp://ieeexplore.ieee.org/servlet/opac?punumber=2227 es_ES
dc.description.references ‘1159‐2009‐IEEE Recommended practice for monitoring electric power quality’. Technical Report June2009. Available athttp://ieeexplore.ieee.org/servlet/opac?punumber=5154052 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem