Mostrar el registro sencillo del ítem
dc.contributor.author | García-Sánchez, Tania María | es_ES |
dc.contributor.author | Gómez-Lázaro, Emilio | es_ES |
dc.contributor.author | Muljadi, Edward | es_ES |
dc.contributor.author | Kessler, Mathieu | es_ES |
dc.contributor.author | Muñoz-Benavente, Irene | es_ES |
dc.contributor.author | Molina-García, Angel | es_ES |
dc.date.accessioned | 2020-10-31T04:32:42Z | |
dc.date.available | 2020-10-31T04:32:42Z | |
dc.date.issued | 2018-03-27 | es_ES |
dc.identifier.issn | 1751-8687 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/153793 | |
dc.description.abstract | [EN] Generation units connected to the grid are currently required to meet low-voltage ride-through (LVRT) requirements. In most developed countries, these requirements also apply to renewable sources, mainly wind power plants and photovoltaic installations connected to the grid. This study proposes an alternative characterisation solution to classify and visualise a large number of collected events in light of current limits and requirements. The authors' approach is based on linearised root-mean-square-(RMS)-voltage trajectories, taking into account LRVT requirements, and a clustering process to identify the most likely pattern trajectories. The proposed solution gives extensive information on an event's severity by providing a simple but complete visualisation of the linearised RMS-voltage patterns. In addition, these patterns are compared to current LVRT requirements to determine similarities or discrepancies. A large number of collected events can then be automatically classified and visualised for comparative purposes. Real disturbances collected from renewable sources in Spain are used to assess the proposed solution. Extensive results and discussions are also included in this study. | es_ES |
dc.description.sponsorship | The authors thank the financial support from the 'Ministerio de Economia y Competitividad' (Spain) and the European Union - ENE2016-78214-C2-2-R, Fulbright/Spanish Ministry of Education Visiting Scholar - PRX14/00694. This work was also supported by the US Department of Energy under contract no. DE-AC36-08-GO28308 with the National Renewable Energy Laboratory | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Institution of Electrical Engineers | es_ES |
dc.relation.ispartof | IET Generation Transmission & Distribution | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Clustering | es_ES |
dc.subject | Voltage measurement | es_ES |
dc.subject | Pattern recognition | es_ES |
dc.subject.classification | INGENIERIA ELECTRICA | es_ES |
dc.title | Identification of Linearized RMS-Voltage Dip Patterns Based on Clustering in Renewable Plants | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1049/iet-gtd.2017.0474 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//ENE2016-78214-C2-2-R/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MECD//PRX14%2F00694/ES/PRX14%2F00694/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/DOE//DE-AC36-08-GO28308/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Eléctrica - Departament d'Enginyeria Elèctrica | es_ES |
dc.description.bibliographicCitation | García-Sánchez, TM.; Gómez-Lázaro, E.; Muljadi, E.; Kessler, M.; Muñoz-Benavente, I.; Molina-García, A. (2018). Identification of Linearized RMS-Voltage Dip Patterns Based on Clustering in Renewable Plants. IET Generation Transmission & Distribution. 12(6):1256-1262. https://doi.org/10.1049/iet-gtd.2017.0474 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1049/iet-gtd.2017.0474 | es_ES |
dc.description.upvformatpinicio | 1256 | es_ES |
dc.description.upvformatpfin | 1262 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 12 | es_ES |
dc.description.issue | 6 | es_ES |
dc.relation.pasarela | S\345199 | es_ES |
dc.contributor.funder | Ministerio de Educación | es_ES |
dc.contributor.funder | U.S. Department of Energy | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.description.references | Craciun B. Kerekes T. Sera D.et al.: ‘Overview of recent grid codes for PV power integration’.13th Int. Conf. on Optimization of Electrical and Electronic Equipment (OPTIM) 2012 May2012 pp.959–965 | es_ES |
dc.description.references | ‘World Energy Outlook 2012’. Technical Report International Egency Agency (IEA) 2012. Available atwww.iea.org | es_ES |
dc.description.references | Behrens C.E.: ‘Energy policy: 113th congress issues’.Congressional Research Service 2013 | es_ES |
dc.description.references | Lopes, J. A. P., Hatziargyriou, N., Mutale, J., Djapic, P., & Jenkins, N. (2007). Integrating distributed generation into electric power systems: A review of drivers, challenges and opportunities. Electric Power Systems Research, 77(9), 1189-1203. doi:10.1016/j.epsr.2006.08.016 | es_ES |
dc.description.references | Glassmire, J., Komor, P., & Lilienthal, P. (2012). Electricity demand savings from distributed solar photovoltaics. Energy Policy, 51, 323-331. doi:10.1016/j.enpol.2012.08.022 | es_ES |
dc.description.references | Carvalho, D., Wemans, J., Lima, J., & Malico, I. (2011). Photovoltaic energy mini-generation: Future perspectives for Portugal. Energy Policy, 39(9), 5465-5473. doi:10.1016/j.enpol.2011.05.016 | es_ES |
dc.description.references | Battaglini, A., Komendantova, N., Brtnik, P., & Patt, A. (2012). Perception of barriers for expansion of electricity grids in the European Union. Energy Policy, 47, 254-259. doi:10.1016/j.enpol.2012.04.065 | es_ES |
dc.description.references | ‘European Commission 2010a. Energy 2020. A strategy for competitive sustainable and secure energy’. Technical Report Brussels November2011 | es_ES |
dc.description.references | Beurskens P.V.L.W.M. Hekkenberg M.: ‘Renewable energy projections as published in the national renewable energy action plans of the european member states’. Technical Report European Environment Agency (EEA) November2011 | es_ES |
dc.description.references | Coll-Mayor, D., Paget, M., & Lightner, E. (2007). Future intelligent power grids: Analysis of the vision in the European Union and the United States. Energy Policy, 35(4), 2453-2465. doi:10.1016/j.enpol.2006.09.001 | es_ES |
dc.description.references | Passey, R., Spooner, T., MacGill, I., Watt, M., & Syngellakis, K. (2011). The potential impacts of grid-connected distributed generation and how to address them: A review of technical and non-technical factors. Energy Policy, 39(10), 6280-6290. doi:10.1016/j.enpol.2011.07.027 | es_ES |
dc.description.references | Sangroniz N. Mora J.A. Teixeira M.D.: ‘Review of international grid codes for wind generation’ 2009 | es_ES |
dc.description.references | ‘Global Market Outlook for Photovoltaics Until 2016’. Technical Report European Photovoltaic Industry Association 2012. Available atwww.epia.org | es_ES |
dc.description.references | Kim S. Bollen M.: ‘Towards the development of a set of grid code requirements for wind farms: transient reactive power requirements’. Technical Report Available as Elforsk Report 13 : 04. Part 3 Report of Vindforsk Project V‐369 Vindforsk III January2013 | es_ES |
dc.description.references | Tsili, M., & Papathanassiou, S. (2009). A review of grid code technical requirements for wind farms. IET Renewable Power Generation, 3(3), 308. doi:10.1049/iet-rpg.2008.0070 | es_ES |
dc.description.references | Hossain, J., & Mahmud, A. (Eds.). (2014). Renewable Energy Integration. Green Energy and Technology. doi:10.1007/978-981-4585-27-9 | es_ES |
dc.description.references | Sourkounis C. Tourou P.: ‘Grid code requirements for wind power integration in Europe’.Conf. Papers in Energy 2013 pp.1–9 | es_ES |
dc.description.references | Voltage Ride-Through Capability Verification of Wind Turbines With Fully-Rated Converters Using Reachability Analysis. (2014). IEEE Transactions on Energy Conversion, 29(2), 392-405. doi:10.1109/tec.2013.2295168 | es_ES |
dc.description.references | Mohseni, M., & Islam, S. M. (2012). Review of international grid codes for wind power integration: Diversity, technology and a case for global standard. Renewable and Sustainable Energy Reviews, 16(6), 3876-3890. doi:10.1016/j.rser.2012.03.039 | es_ES |
dc.description.references | ‘Royal Decree 1565/2010 by which regulates and modifies certain aspects of the activity of production of electric energy in special regime. (In spanish)’. Technical Report November2010 | es_ES |
dc.description.references | Sourkounis C. Tourou P.: ‘Grid code requirements for wind power integration in Europe’.Conf. Papers in Science 2013 | es_ES |
dc.description.references | Jiménez, F., Gómez-Lázaro, E., Fuentes, J. A., Molina-García, A., & Vigueras-Rodríguez, A. (2011). Validation of a double fed induction generator wind turbine model and wind farm verification following the Spanish grid code. Wind Energy, 15(4), 645-659. doi:10.1002/we.498 | es_ES |
dc.description.references | Montoro D.: ‘Recommendations for unified technical regulations for grid‐connected PV systems’. Technical Report SUNRISE project – European Photovoltaic Industry Association the European Construction Industry Federation the European Association of Electrical Contractors International Union of Architects 2009. Available athttp://www.pvsunrise.eu/ | es_ES |
dc.description.references | Merino, J., Mendoza-Araya, P., & Veganzones, C. (2014). State of the Art and Future Trends in Grid Codes Applicable to Isolated Electrical Systems. Energies, 7(12), 7936-7954. doi:10.3390/en7127936 | es_ES |
dc.description.references | deAlmeida P. Barbosa P. Duque C.et al.: ‘Grid connection considerations for the integration of PV and wind sources’.IEEE 16th Int. Conf. on Harmonics and Quality of Power (ICHQP) May2014 pp.6–9 | es_ES |
dc.description.references | ‘Network code requirements for grid connection applicable to all generators’. Technical Report European Network of Transmission System Operators for Electricity ENTSO‐E October2013. Available athttps://www.entsoe.eu/ | es_ES |
dc.description.references | Kagan N. Ferrari E. Matsuo N.et al.: ‘Influence of rms variation measurement protocols on electrical system performance indices for voltage sags and swells’.Proc. Ninth Int. Conf. on Harmonics and Quality of Power 2000 2000 vol.3 pp.790–795 | es_ES |
dc.description.references | Bollen, M. H. J. (2003). Algorithms for characterizing measured three-phase unbalanced voltage dips. IEEE Transactions on Power Delivery, 18(3), 937-944. doi:10.1109/tpwrd.2003.813879 | es_ES |
dc.description.references | Bollen M.H.: ‘Comparing voltage dip survey results’.Power Engineering Society Winter Meeting 2002 2002 vol.2 pp.1130–1134 | es_ES |
dc.description.references | Moreno‐Muñoz A. de laRosa J.: ‘Voltage sag in highly automated factories’.Industry Applications Society Annual Meeting IAS'08 2008 pp.1–6 | es_ES |
dc.description.references | Gomez-Lazaro, E., Fuentes, J. A., Molina-Garcia, A., & Canas-Carreton, M. (2009). Characterization and Visualization of Voltage Dips in Wind Power Installations. IEEE Transactions on Power Delivery, 24(4), 2071-2078. doi:10.1109/tpwrd.2009.2027513 | es_ES |
dc.description.references | Gunther, E. W., & Mebta, H. (1995). A survey of distribution system power quality-preliminary results. IEEE Transactions on Power Delivery, 10(1), 322-329. doi:10.1109/61.368382 | es_ES |
dc.description.references | Belloni F. Chiappa C. Chiumeo R.et al.: ‘Voltage dip measurements along MV lines vs primary substations measurements’.Int. Conf. on Renewable Energies and Power Quality (ICREPQ'12) March2012 pp.28–30 | es_ES |
dc.description.references | Garcia-Sanchez, T., Gomez-Lazaro, E., Muljadi, E., Kessler, M., & Molina-Garcia, A. (2016). Statistical and Clustering Analysis for Disturbances: A Case Study of Voltage Dips in Wind Farms. IEEE Transactions on Power Delivery, 31(6), 2530-2537. doi:10.1109/tpwrd.2016.2522946 | es_ES |
dc.description.references | Barrera Nunez V. Melendez Frigola J. Herraiz Jaramillo S.: ‘A survey on voltage sag events in power systems’.IEEE/PES Transmission and Distribution Conf. and Exposition: Latin America 2008 August2008 pp.1–3 | es_ES |
dc.description.references | ‘IEEE Standard 519‐1992: Recommended practices and requirements for harmonic control in electrical power systems’. Technical Report 1993. Available athttp://ieeexplore.ieee.org/servlet/opac?punumber=2227 | es_ES |
dc.description.references | ‘1159‐2009‐IEEE Recommended practice for monitoring electric power quality’. Technical Report June2009. Available athttp://ieeexplore.ieee.org/servlet/opac?punumber=5154052 | es_ES |