- -

Zero-phase propagation in realistic plate-type acoustic metamaterials

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Zero-phase propagation in realistic plate-type acoustic metamaterials

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Malléjac, M. es_ES
dc.contributor.author Merkel, A. es_ES
dc.contributor.author Sánchez-Dehesa Moreno-Cid, José es_ES
dc.contributor.author Christensen, J. es_ES
dc.contributor.author Tournat, V. es_ES
dc.contributor.author Groby, Jean-Philippe es_ES
dc.contributor.author Romero García, Vicente es_ES
dc.date.accessioned 2020-11-04T04:31:51Z
dc.date.available 2020-11-04T04:31:51Z
dc.date.issued 2019-09-23 es_ES
dc.identifier.issn 0003-6951 es_ES
dc.identifier.uri http://hdl.handle.net/10251/154021
dc.description.abstract [EN] We theoretically, numerically, and experimentally analyze the Density-Near-Zero (DNZ) regime of a one-dimensional acoustic metamaterial. This acoustic metamaterial is composed of thin elastic plates periodically clamped in an air-filled waveguide, and the effective dynamic zero mass density is obtained from the strong dispersion around the bandgaps associated with the resonances of the plates. We emphasize the importance of the impedance mismatch between the acoustic metamaterial and the surrounding waveguide at the frequency of the zero effective density in addition to the consequences of the inherent losses. As a result, the frequency of the zero phase propagation, i.e., the acoustic propagation with zero phase delay, is not exactly the frequency of the zero density and lies in the frequency bandgap where the effective density is negative. Considering these limitations, the zero phase propagation is still experimentally observed and a subwavelength acoustic dipole is numerically designed, thus demonstrating the possible realistic implementations of DNZ acoustic metamaterials. es_ES
dc.description.sponsorship This article is based upon work from COST Action DENORMS CA15125, supported by COST (European Cooperation in Science and Technology). This work was funded by the Metaroom Project No. ANR-18-CE08-0021 and co-funded by ANR and RCG. J. Christensen acknowledges the support from the MINECO through a Ramon y Cajal grant (Grant No. RYC-2015-17156). J. Sanchez-Dehesa acknowledges the support from the Ministerio de Economia y Competitividad of the Spanish government and the European Union Fondo Europeo de Desarrollo Regional (FEDER) through Project No. TEC2014-53088-C3-1-R. es_ES
dc.language Inglés es_ES
dc.publisher American Institute of Physics es_ES
dc.relation.ispartof Applied Physics Letters es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Zero-phase metamaterials es_ES
dc.subject Acoustic metamaterials es_ES
dc.subject Plates es_ES
dc.subject Membranes es_ES
dc.subject.classification FISICA APLICADA es_ES
dc.subject.classification TECNOLOGIA ELECTRONICA es_ES
dc.title Zero-phase propagation in realistic plate-type acoustic metamaterials es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1063/1.5121295 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/COST//CA15125/EU/Designs for Noise Reducing Materials and Structures (DENORMS)/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/ANR//ANR-18-CE08-0021/FR/METARoom: deep subwavelength reconfigurable acoustic treatments for room acoustics/METARoom/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//RYC-2015-17156/ES/RYC-2015-17156/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//TEC2014-53088-C3-1-R/ES/DISPOSITIVOS PASIVOS BASADOS EN MATERIALES FUNCIONALES AVANZADOS CON RESONADORES DE ALTAS PRESTACIONES/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Matemática Pura y Aplicada - Institut Universitari de Matemàtica Pura i Aplicada es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica es_ES
dc.description.bibliographicCitation Malléjac, M.; Merkel, A.; Sánchez-Dehesa Moreno-Cid, J.; Christensen, J.; Tournat, V.; Groby, J.; Romero García, V. (2019). Zero-phase propagation in realistic plate-type acoustic metamaterials. Applied Physics Letters. 115(13):134101-1-134101-5. https://doi.org/10.1063/1.5121295 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1063/1.5121295 es_ES
dc.description.upvformatpinicio 134101-1 es_ES
dc.description.upvformatpfin 134101-5 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 115 es_ES
dc.description.issue 13 es_ES
dc.relation.pasarela S\395438 es_ES
dc.contributor.funder Ministerio de Economía y Empresa es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.contributor.funder Agence Nationale de la Recherche, Francia es_ES
dc.contributor.funder European Cooperation in Science and Technology es_ES
dc.description.references Graciá-Salgado, R., García-Chocano, V. M., Torrent, D., & Sánchez-Dehesa, J. (2013). Negative mass density andρ-near-zero quasi-two-dimensional metamaterials: Design and applications. Physical Review B, 88(22). doi:10.1103/physrevb.88.224305 es_ES
dc.description.references Huang, T.-Y., Shen, C., & Jing, Y. (2016). Membrane- and plate-type acoustic metamaterials. The Journal of the Acoustical Society of America, 139(6), 3240-3250. doi:10.1121/1.4950751 es_ES
dc.description.references Ma, G., Yang, M., Xiao, S., Yang, Z., & Sheng, P. (2014). Acoustic metasurface with hybrid resonances. Nature Materials, 13(9), 873-878. doi:10.1038/nmat3994 es_ES
dc.description.references Romero-García, V., Theocharis, G., Richoux, O., Merkel, A., Tournat, V., & Pagneux, V. (2016). Perfect and broadband acoustic absorption by critically coupled sub-wavelength resonators. Scientific Reports, 6(1). doi:10.1038/srep19519 es_ES
dc.description.references Stinson, M. R. (1991). The propagation of plane sound waves in narrow and wide circular tubes, and generalization to uniform tubes of arbitrary cross‐sectional shape. The Journal of the Acoustical Society of America, 89(2), 550-558. doi:10.1121/1.400379 es_ES
dc.description.references Niskanen, M., Groby, J.-P., Duclos, A., Dazel, O., Le Roux, J. C., Poulain, N., … Lähivaara, T. (2017). Deterministic and statistical characterization of rigid frame porous materials from impedance tube measurements. The Journal of the Acoustical Society of America, 142(4), 2407-2418. doi:10.1121/1.5008742 es_ES
dc.description.references Groby, J.-P., Lauriks, W., & Vigran, T. E. (2010). Total absorption peak by use of a rigid frame porous layer backed by a rigid multi-irregularities grating. The Journal of the Acoustical Society of America, 127(5), 2865-2874. doi:10.1121/1.3337235 es_ES
dc.description.references Allard, J. F., & Atalla, N. (2009). Propagation of Sound in Porous Media. doi:10.1002/9780470747339 es_ES
dc.description.references De Ryck, L., Groby, J.-P., Leclaire, P., Lauriks, W., Wirgin, A., Fellah, Z. E. A., & Depollier, C. (2007). Acoustic wave propagation in a macroscopically inhomogeneous porous medium saturated by a fluid. Applied Physics Letters, 90(18), 181901. doi:10.1063/1.2431570 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem