- -

Rewiring carotenoid biosynthesis in plants using a viral vector

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Rewiring carotenoid biosynthesis in plants using a viral vector

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Majer, Eszter es_ES
dc.contributor.author Llorente, Briardo es_ES
dc.contributor.author Rodríguez-Concepción, Manuel es_ES
dc.contributor.author Daros Arnau, Jose Antonio es_ES
dc.date.accessioned 2020-11-04T04:32:12Z
dc.date.available 2020-11-04T04:32:12Z
dc.date.issued 2017-01-31 es_ES
dc.identifier.issn 2045-2322 es_ES
dc.identifier.uri http://hdl.handle.net/10251/154027
dc.description.abstract [EN] Plants can be engineered to sustainably produce compounds of nutritional, industrial or pharmaceutical relevance. This is, however, a challenging task as extensive regulation of biosynthetic pathways often hampers major metabolic changes. Here we describe the use of a viral vector derived from Tobacco etch virus to express a whole heterologous metabolic pathway that produces the health-promoting carotenoid lycopene in tobacco tissues. The pathway consisted in three enzymes from the soil bacteria Pantoea ananatis. Lycopene is present at undetectable levels in chloroplasts of non-infected leaves. In tissues infected with the viral vector, however, lycopene comprised approximately 10% of the total carotenoid content. Our research further showed that plant viruses that express P. ananatis phytoene synthase (crtB), one of the three enzymes of the heterologous pathway, trigger an accumulation of endogenous carotenoids, which together with a reduction in chlorophylls eventually result in a bright yellow pigmentation of infected tissues in various host-virus combinations. So, besides illustrating the potential of viral vectors for engineering complex metabolic pathways, we also show a yellow carotenoid-based reporter that can be used to visually track infection dynamics of plant viruses either alone or in combination with other visual markers. es_ES
dc.description.sponsorship We thank Veronica Aragones and M. Rosa Rodriguez-Goberna for excellent technical assistance. This research was supported by Spanish Ministerio de Economia y Competitividad (MINECO) grants BIO2014-54269-R to J.-A.D., and BIO2014-59092-P and BIO2015-71703-REDT to M. R.-C. Financial support from the Generalitat Valenciana (PROMETEOII/2014/021), the Programa Iberoamericano de Ciencia y Tecnologia para el Desarrollo (Ibercarot 112RT0445), and the Generalitat de Catalunya (2014SGR-1434) is also acknowledged. E.M. is the recipient of a pre-doctoral fellowship (AP2012-3751) from the Spanish Ministerio de Educacion, Cultura y Deporte. B.L. is supported by a postdoctoral fellowship (FPDI-2013-018882) from MINECO. es_ES
dc.language Inglés es_ES
dc.publisher Nature Publishing Group es_ES
dc.relation.ispartof Scientific Reports es_ES
dc.rights Reconocimiento (by) es_ES
dc.title Rewiring carotenoid biosynthesis in plants using a viral vector es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1038/srep41645 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MECD//AP2012-3751/ES/AP2012-3751/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEOII%2F2014%2F021/ES/Comparative systems biology of host-virus interactions/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//BIO2014-54269-R/ES/INSTRUMENTOS BIOTECNOLOGICOS DERIVADOS DE VIRUS DE PLANTAS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//BIO2014-59092-P/ES/CONTROL DE LA BIOSINTESIS DE CAROTENOIDES EN EL CONTEXTO DEL METABOLISMO DE LA CELULA VEGETAL/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//BIO2015-71703-REDT/ES/CAROTENOIDES EN RED: DE LOS MICROORGANISMOS Y LAS PLANTAS A LOS ALIMENTOS Y LA SALUD/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/CYTED//112RT0445/ES/RED IBEROAMERICANA PARA EL ESTUDIO DE NUEVOS CAROTENOIDES BIOACTIVOS COMO INGREDIENTES DE ALIMENTOS (IBERCAROT)/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/Generalitat de Catalunya//2014 SGR 1434/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//FPDI-2013-18882/ES/FPDI-2013-18882/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes es_ES
dc.description.bibliographicCitation Majer, E.; Llorente, B.; Rodríguez-Concepción, M.; Daros Arnau, JA. (2017). Rewiring carotenoid biosynthesis in plants using a viral vector. Scientific Reports. 7. https://doi.org/10.1038/srep41645 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1038/srep41645 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 7 es_ES
dc.subject.asignatura Aplicaciones de la biotecnología al diseño de nuevos carácteres y productos 32722 / W - Programa de doctorado en biotecnología 2071 es_ES
dc.subject.asignatura Aplicaciones de la biotecnología al diseño de nuevos carácteres y productos 32722 / X - Máster universitario en biotecnología molecular y celular de plantas 2172 es_ES
dc.identifier.pmid 28139696 es_ES
dc.identifier.pmcid PMC5282570 es_ES
dc.relation.pasarela S\356534 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Generalitat de Catalunya es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.contributor.funder Ministerio de Educación, Cultura y Deporte es_ES
dc.contributor.funder CYTED Ciencia y Tecnología para el Desarrollo es_ES
dc.description.references O’Connor, S. E. Engineering of secondary metabolism. Annu. Rev. Genet. 49, 71–94 (2015). es_ES
dc.description.references Sainsbury, F. & Lomonossoff, G. P. Transient expressions of synthetic biology in plants. Curr. Opin. Plant Biol. 19, 1–7 (2014). es_ES
dc.description.references Gleba, Y. Y., Tusé, D. & Giritch, A. Plant viral vectors for delivery by Agrobacterium. Curr. Top. Microbiol. Immunol. 375, 155–192 (2014). es_ES
dc.description.references Chen, Q., He, J., Phoolcharoen, W. & Mason, H. S. Geminiviral vectors based on bean yellow dwarf virus for production of vaccine antigens and monoclonal antibodies in plants. Hum. Vaccin. 7, 331–338 (2011). es_ES
dc.description.references Pogue, G. P., Lindbo, J. A., Garger, S. J. & Fitzmaurice, W. P. Making an ally from an enemy: plant virology and the new agriculture. Annu. Rev. Phytopathol. 40, 45–74 (2002). es_ES
dc.description.references Peyret, H. & Lomonossoff, G. P. When plant virology met Agrobacterium: the rise of the deconstructed clones. Plant Biotechnol. J. 13, 1121–1135 (2015). es_ES
dc.description.references Bedoya, L. C., Martínez, F., Orzáez, D. & Daròs, J. A. Visual tracking of plant virus infection and movement using a reporter MYB transcription factor that activates anthocyanin biosynthesis. Plant Physiol. 158, 1130–1138 (2012). es_ES
dc.description.references Majer, E., Daròs, J. A. & Zwart, M. P. Stability and fitness impact of the visually discernible Rosea1 marker in the Tobacco etch virus genome. Viruses 5, 2153–2168 (2013). es_ES
dc.description.references Bedoya, L., Martínez, F., Rubio, L. & Daròs, J. A. Simultaneous equimolar expression of multiple proteins in plants from a disarmed potyvirus vector. J. Biotechnol. 150, 268–275 (2010). es_ES
dc.description.references Kelloniemi, J., Mäkinen, K. & Valkonen, J. P. Three heterologous proteins simultaneously expressed from a chimeric potyvirus: infectivity, stability and the correlation of genome and virion lengths. Virus Res. 135, 282–291 (2008). es_ES
dc.description.references Carrington, J. C., Haldeman, R., Dolja, V. V. & Restrepo-Hartwig, M. A. Internal cleavage and trans-proteolytic activities of the VPg-proteinase (NIa) of tobacco etch potyvirus in vivo . J. Virol. 67, 6995–7000 (1993). es_ES
dc.description.references Li, X. H. & Carrington, J. C. Complementation of tobacco etch potyvirus mutants by active RNA polymerase expressed in transgenic cells. Proc. Natl. Acad. Sci. USA 92, 457–461 (1995). es_ES
dc.description.references Fraser, P. D. & Bramley, P. M. The biosynthesis and nutritional uses of carotenoids. Prog. Lipid Res. 43, 228–265 (2004). es_ES
dc.description.references Meléndez-Martínez, A. J., Mapelli-Brahm, P., Benítez-González, A. & Stinco, C. M. A comprehensive review on the colorless carotenoids phytoene and phytofluene. Arch. Biochem. Biophys. 572, 188–200 (2015). es_ES
dc.description.references Rodríguez-Concepción, M. & Boronat, A. Elucidation of the methylerythritol phosphate pathway for isoprenoid biosynthesis in bacteria and plastids. A metabolic milestone achieved through genomics. Plant Physiol. 130, 1079–1089 (2002). es_ES
dc.description.references Giuliano, G. Plant carotenoids: genomics meets multi-gene engineering. Curr. Opin. Plant Biol. 19, 111–117 (2014). es_ES
dc.description.references Cazzonelli, C. I. & Pogson, B. J. Source to sink: regulation of carotenoid biosynthesis in plants. Trends Plant Sci. 15, 266–274 (2010). es_ES
dc.description.references Ruiz-Sola, M. A. & Rodríguez-Concepción, M. Carotenoid biosynthesis in Arabidopsis: a colorful pathway. Arabidopsis Book 10, e0158 (2012). es_ES
dc.description.references Nisar, N., Li, L., Lu, S., Khin, N. C. & Pogson, B. J. Carotenoid metabolism in plants. Mol. Plant 8, 68–82 (2015). es_ES
dc.description.references Misawa, N. et al. Elucidation of the Erwinia uredovora carotenoid biosynthetic pathway by functional analysis of gene products expressed in Escherichia coli . J. Bacteriol. 172, 6704–6712 (1990). es_ES
dc.description.references Hasunuma, T. et al. Biosynthesis of astaxanthin in tobacco leaves by transplastomic engineering. Plant J. 55, 857–868 (2008). es_ES
dc.description.references Lu, Y., Rijzaani, H., Karcher, D., Ruf, S. & Bock, R. Efficient metabolic pathway engineering in transgenic tobacco and tomato plastids with synthetic multigene operons. Proc. Natl. Acad. Sci. USA 110, E623–632 (2013). es_ES
dc.description.references Mann, V., Harker, M., Pecker, I. & Hirschberg, J. Metabolic engineering of astaxanthin production in tobacco flowers. Nat. Biotechnol. 18, 888–892 (2000). es_ES
dc.description.references Wurbs, D., Ruf, S. & Bock, R. Contained metabolic engineering in tomatoes by expression of carotenoid biosynthesis genes from the plastid genome. Plant J. 49, 276–288 (2007). es_ES
dc.description.references Cordero, M. T. et al. Dicer-like 4 is involved in restricting the systemic movement of Zucchini yellow mosaic virus in Nicotiana benthamiana . Mol. Plant-Microbe Interact. doi: 10.1094/MPMI-11-16-0239-R (2016). es_ES
dc.description.references Ye, X. et al. Engineering the provitamin A (b-carotene) biosynthetic pathway into (carotenoid-free) rice endosperm. Science 287, 303–305 (2000). es_ES
dc.description.references Ravanello, M. P., Ke, D., Alvarez, J., Huang, B. & Shewmaker, C. K. Coordinate expression of multiple bacterial carotenoid genes in canola leading to altered carotenoid production. Metab. Eng. 5, 255–263 (2003). es_ES
dc.description.references Fujisawa, M. et al. Pathway engineering of Brassica napus seeds using multiple key enzyme genes involved in ketocarotenoid formation. J. Exp. Bot. 60, 1319–1332 (2009). es_ES
dc.description.references Ohara, K., Ujihara, T., Endo, T., Sato, F. & Yazaki, K. Limonene production in tobacco with Perilla limonene synthase cDNA. J. Exp. Bot. 54, 2635–2642 (2003). es_ES
dc.description.references Gutensohn, M. et al. Cytosolic monoterpene biosynthesis is supported by plastid-generated geranyl diphosphate substrate in transgenic tomato fruits. Plant J. 75, 351–363 (2013). es_ES
dc.description.references Yamano, S., Ishii, T., Nakagawa, M., Ikenaga, H. & Misawa, N. Metabolic engineering for production of beta-carotene and lycopene in Saccharomyces cerevisiae. Biosci. Biotechnol. Biochem. 58, 1112–1114 (1994). es_ES
dc.description.references Bahieldin, A. et al. Efficient production of lycopene in Saccharomyces cerevisiae by expression of synthetic crt genes from a plasmid harboring the ADH2 promoter. Plasmid 72, 18–28 (2014). es_ES
dc.description.references Xie, W., Lv, X., Ye, L., Zhou, P. & Yu, H. Construction of lycopene-overproducing Saccharomyces cerevisiae by combining directed evolution and metabolic engineering. Metab. Eng. 30, 69–78 (2015). es_ES
dc.description.references Li, Y., Cui, H., Cui, X. & Wang, A. The altered photosynthetic machinery during compatible virus infection. Curr. Opin. Virol. 17, 19–24 (2016). es_ES
dc.description.references Tilsner, J. & Oparka, K. J. Tracking the green invaders: advances in imaging virus infection in plants. Biochem. J. 430, 21–37 (2010). es_ES
dc.description.references Kumagai, M. H. et al. Cytoplasmic inhibition of carotenoid biosynthesis with virus-derived RNA. Proc. Natl. Acad. Sci. USA 92, 1679–1683 (1995). es_ES
dc.description.references Kumagai, M. H., Keller, Y., Bouvier, F., Clary, D. & Camara, B. Functional integration of non-native carotenoids into chloroplasts by viral-derived expression of capsanthin-capsorubin synthase in Nicotiana benthamiana . Plant J. 14, 305–315 (1998). es_ES
dc.description.references Zhai, S., Xia, X. & He, Z. Carotenoids in staple cereals: metabolism, regulation, and genetic manipulation. Front. Plant Sci. 7, 1197 (2016). es_ES
dc.description.references Zhang, H. et al. A Narcissus mosaic viral vector system for protein expression and flavonoid production. Plant Methods 9, 28 (2013). es_ES
dc.description.references Nielsen, A. Z. et al. Redirecting photosynthetic reducing power toward bioactive natural product synthesis. ACS Synth. Biol. 2, 308–315 (2013). es_ES
dc.description.references Sainsbury, F., Saxena, P., Geisler, K., Osbourn, A. & Lomonossoff, G. P. Using a virus-derived system to manipulate plant natural product biosynthetic pathways. Methods Enzymol. 517, 185–202 (2012). es_ES
dc.description.references Geisler, K. et al. Biochemical analysis of a multifunctional cytochrome P450 (CYP51) enzyme required for synthesis of antimicrobial triterpenes in plants. Proc. Natl. Acad. Sci. USA 110, E3360–3367 (2013). es_ES
dc.description.references Kanagarajan, S., Muthusamy, S., Gliszczynska, A., Lundgren, A. & Brodelius, P. E. Functional expression and characterization of sesquiterpene synthases from Artemisia annua L. using transient expression system in Nicotiana benthamiana . Plant Cell Rep. 31, 1309–1319 (2012). es_ES
dc.description.references Mozes-Koch, R. et al. Expression of an entire bacterial operon in plants. Plant Physiol. 158, 1883–1892 (2012). es_ES
dc.description.references Thole, V., Worland, B., Snape, J. W. & Vain, P. The pCLEAN dual binary vector system for Agrobacterium-mediated plant transformation. Plant Physiol. 145, 1211–1219 (2007). es_ES
dc.description.references Engler, C., Gruetzner, R., Kandzia, R. & Marillonnet, S. Golden gate shuffling: a one-pot DNA shuffling method based on type IIs restriction enzymes. PLoS One 4, e5553 (2009). es_ES
dc.description.references Gibson, D. G. et al. Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat. Methods 6, 343–345 (2009). es_ES
dc.description.references Cunningham, F. X. Jr., Chamovitz, D., Misawa, N., Gantt, E. & Hirschberg, J. Cloning and functional expression in Escherichia coli of a cyanobacterial gene for lycopene cyclase, the enzyme that catalyzes the biosynthesis of b-carotene. FEBS Lett. 328, 130–138 (1993). es_ES
dc.description.references Shivprasad, S. et al. Heterologous sequences greatly affect foreign gene expression in tobacco mosaic virus-based vectors. Virology 255, 312–323 (1999). es_ES
dc.description.references Schürer, H., Lang, K., Schuster, J. & Mörl, M. A universal method to produce in vitro transcripts with homogeneous 3′ ends. Nucleic Acids Res. 30, e56 (2002). es_ES
dc.description.references Lu, R. et al. High throughput virus-induced gene silencing implicates heat shock protein 90 in plant disease resistance. EMBO J. 22, 5690–5699 (2003). es_ES
dc.description.references Dickmeis, C., Fischer, R. & Commandeur, U. Potato virus X-based expression vectors are stabilized for long-term production of proteins and larger inserts. Biotechnol. J. 9, 1369–1379 (2014). es_ES
dc.description.references Nakagawa, T. et al. Improved Gateway binary vectors: high-performance vectors for creation of fusion constructs in transgenic analysis of plants. Biosci. Biotechnol. Biochem. 71, 2095–2100 (2007). es_ES
dc.description.references Bedoya, L. C. & Daròs, J. A. Stability of Tobacco etch virus infectious clones in plasmid vectors. Virus Res. 149, 234–240 (2010). es_ES
dc.description.references Sparkes, I. A., Runions, J., Kearns, A. & Hawes, C. Rapid, transient expression of fluorescent fusion proteins in tobacco plants and generation of stably transformed plants. Nat. Protoc. 1, 2019–2025 (2006). es_ES
dc.description.references Llorente, B. et al. Tomato fruit carotenoid biosynthesis is adjusted to actual ripening progression by a light-dependent mechanism. Plant J. 85, 107–119 (2016). es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem