- -

Hybrid Protein-Glycosaminoglycan Hydrogels Promote Chondrogenic Stem Cell Differentiation

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Hybrid Protein-Glycosaminoglycan Hydrogels Promote Chondrogenic Stem Cell Differentiation

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Moulisova, Vladimira es_ES
dc.contributor.author Poveda-Reyes, Sara es_ES
dc.contributor.author Sanmartin-Masia, Esther es_ES
dc.contributor.author Quintanilla-Sierra, Luis es_ES
dc.contributor.author Gallego-Ferrer, Gloria es_ES
dc.contributor.author Salmerón Sánchez, Manuel es_ES
dc.date.accessioned 2020-11-05T04:32:55Z
dc.date.available 2020-11-05T04:32:55Z
dc.date.issued 2017-11-07 es_ES
dc.identifier.uri http://hdl.handle.net/10251/154100
dc.description.abstract [EN] Gelatin-hyaluronic acid (Gel-HA) hybrid hydrogels have been proposed as matrices for tissue engineering because of their ability to mimic the architecture of the extracellular matrix. Our aim was to explore whether tyramine conjugates of Gel and HA, producing injectable hydrogels, are able to induce a particular phenotype of encapsulated human mesenchymal stem cells without the need for growth factors. While pure Gel allowed good cell adhesion without remarkable differentiation and pure HA triggered chondrogenic differentiation without cell spreading, the hybrids, especially those rich in HA, promoted chondrogenic differentiation as well as cell proliferation and adhesion. Secretion of chondrogenic markers such as aggrecan, SOX-9, collagen type II, and glycosaminoglycans was observed, whereas osteogenic, myogenic, and adipogenic markers (RUNX2, sarcomeric myosin, and lipoproteinlipase, respectively) were not present after 2 weeks in the growth medium. The most promising matrix for chondrogenesis seems to be a mixture containing 70% HA and 30% Gel as it is the material with the best mechanical properties from all compositions tested here, and at the same time, it provides an environment suitable for balanced cell adhesion and chondrogenic differentiation. Thus, it represents a system that has a high potential to be used as the injectable material for cartilage regeneration therapies. es_ES
dc.description.sponsorship The authors are grateful for the financial support received from the Spanish Ministry through the MAT2016-76039-C4-1-R project (including the FEDER financial support), the BES-2011-046144, and the EEBB-I-14-08725 grants. The CIBER-BBN initiative is funded by the VI National R&D&I Plan 2008-2011, Iniciativa Ingenio 2010, Consolider Program. CIBER actions are financed by the Instituto de Salud Carlos III with assistance from the European Regional Development Fund. M.S.-S. acknowledges the European Research Council (ERC-HealInSynergy 306990) and the UK Engineering and Physical Sciences Research Council (EPSRC-EP/P001114/1) es_ES
dc.language Inglés es_ES
dc.publisher American Chemical Society es_ES
dc.relation.ispartof ACS Omega es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Biochemistry es_ES
dc.subject Cell and Molecular biology es_ES
dc.subject Extracellular matrix proteins es_ES
dc.subject Hydrogels es_ES
dc.subject Physical and chemical processes es_ES
dc.subject Tissue engineering es_ES
dc.subject.classification MAQUINAS Y MOTORES TERMICOS es_ES
dc.subject.classification TERMODINAMICA APLICADA (UPV) es_ES
dc.subject.classification FISICA APLICADA es_ES
dc.title Hybrid Protein-Glycosaminoglycan Hydrogels Promote Chondrogenic Stem Cell Differentiation es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1021/acsomega.7b01303 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/FP7/306990/EU/Material-driven Fibronectin Fibrillogenesis to Engineer Synergistic Growth Factor Microenvironments/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UKRI//EP%2FP001114%2F1/GB/Engineering growth factor microenvironments - a new therapeutic paradigm for regenerative medicine/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//EEBB-I-14-08725/ES/EEBB-I-14-08725/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//BES-2011-046144/ES/BES-2011-046144/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//MAT2016-76039-C4-1-R/ES/BIOMATERIALES PIEZOELECTRICOS PARA LA DIFERENCIACION CELULAR EN INTERFASES CELULA-MATERIAL ELECTRICAMENTE ACTIVAS/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Termodinámica Aplicada - Departament de Termodinàmica Aplicada es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada es_ES
dc.description.bibliographicCitation Moulisova, V.; Poveda-Reyes, S.; Sanmartin-Masia, E.; Quintanilla-Sierra, L.; Gallego-Ferrer, G.; Salmerón Sánchez, M. (2017). Hybrid Protein-Glycosaminoglycan Hydrogels Promote Chondrogenic Stem Cell Differentiation. ACS Omega. 2(11):7609-7620. https://doi.org/10.1021/acsomega.7b01303 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1021/acsomega.7b01303 es_ES
dc.description.upvformatpinicio 7609 es_ES
dc.description.upvformatpfin 7620 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 2 es_ES
dc.description.issue 11 es_ES
dc.identifier.eissn 2470-1343 es_ES
dc.identifier.pmid 29214232 es_ES
dc.identifier.pmcid PMC5709783 es_ES
dc.relation.pasarela S\358990 es_ES
dc.contributor.funder UK Research and Innovation es_ES
dc.contributor.funder Engineering and Physical Sciences Research Council, Reino Unido es_ES
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem