- -

Internal Combustion Engine Heat Transfer and Wall Temperature Modeling: An Overview

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Internal Combustion Engine Heat Transfer and Wall Temperature Modeling: An Overview

Mostrar el registro completo del ítem

Fonseca, L.; Novella Rosa, R.; Olmeda, P.; Valle, RM. (2019). Internal Combustion Engine Heat Transfer and Wall Temperature Modeling: An Overview. Archives of Computational Methods in Engineering. 27(5):1661-1679. https://doi.org/10.1007/s11831-019-09361-9

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/154112

Ficheros en el ítem

Metadatos del ítem

Título: Internal Combustion Engine Heat Transfer and Wall Temperature Modeling: An Overview
Autor: Fonseca, Leonardo Novella Rosa, Ricardo Olmeda, P. Valle, Ramon Molina
Entidad UPV: Universitat Politècnica de València. Departamento de Máquinas y Motores Térmicos - Departament de Màquines i Motors Tèrmics
Fecha difusión:
Resumen:
[EN] Internal combustion engines are now extremely optimized, in such ways improving their performance is a costly task. Traditional engine improvement by experimental means is aided by engine thermodynamic models, reducing ...[+]
Palabras clave: Internal combustion engine , Engine wall temperature modeling , Engine heat transfer modelling , Engine thermodynamic modelling
Derechos de uso: Reserva de todos los derechos
Fuente:
Archives of Computational Methods in Engineering. (issn: 1134-3060 )
DOI: 10.1007/s11831-019-09361-9
Editorial:
Springer-Verlag
Versión del editor: https://doi.org/10.1007/s11831-019-09361-9
Agradecimientos:
This study was partially funded by CAPES - DEMANDA SOCIAL Ph.D. level scholarship, from CAPES (Coordination for the Improvement of Higher Education Personnel).
Tipo: Artículo

References

Olmeda P, Martín J, Novella R, Carreño R (2015) An adapted heat transfer model for engines with tumble motion. Appl Energy 158:190–202. https://doi.org/10.1016/j.apenergy.2015.08.051

Broekaert S, Demuynck J, De Cuyper T, De Paepe M, Verhelst Sebastian (2016) Heat transfer in premixed spark ignition engines part i: identification of the factors influencing heat transfer. Energy 116:380–391. https://doi.org/10.1016/j.energy.2016.08.065

Kosmadakis GM, Pariotis EG, Rakopoulos CD (2013) Heat transfer and crevice flow in a hydrogen-fueled spark-ignition engine: effect on the engine performance and no exhaust emissions. Int J Hydrog Energy 38(18):7477–7489. https://doi.org/10.1016/j.ijhydene.2013.03.129 [+]
Olmeda P, Martín J, Novella R, Carreño R (2015) An adapted heat transfer model for engines with tumble motion. Appl Energy 158:190–202. https://doi.org/10.1016/j.apenergy.2015.08.051

Broekaert S, Demuynck J, De Cuyper T, De Paepe M, Verhelst Sebastian (2016) Heat transfer in premixed spark ignition engines part i: identification of the factors influencing heat transfer. Energy 116:380–391. https://doi.org/10.1016/j.energy.2016.08.065

Kosmadakis GM, Pariotis EG, Rakopoulos CD (2013) Heat transfer and crevice flow in a hydrogen-fueled spark-ignition engine: effect on the engine performance and no exhaust emissions. Int J Hydrog Energy 38(18):7477–7489. https://doi.org/10.1016/j.ijhydene.2013.03.129

Borman G, Nishiwaki K (1987) Internal-combustion engine heat transfer. Prog Energy Combust Sci 13(1):1–46. https://doi.org/10.1016/0360-1285(87)90005-0

Yamakawa M, Youso T, Fujikawa T, Nishimoto T, Wada Y, Sato K, Yokohata H (2012) Combustion technology development for a high compression ratio SI engine. SAE Int J Fuels Lubr 5(1):98–105. https://doi.org/10.4271/2011-01-1871

Deng B, Jianqin F, Zhang D, Yang J, Feng R, Liu J, Li K, Liu X (2013) The heat release analysis of bio-butanol/gasoline blends on a high speed SI (spark ignition) engine. Energy 60:230–241. https://doi.org/10.1016/j.energy.2013.07.055

Šarić S, Basara B, Žunič Z (2017) Advanced near-wall modeling for engine heat transfer. Int J Heat Fluid Flow 63:205–211. https://doi.org/10.1016/j.ijheatfluidflow.2016.06.019

Bohac SV, Baker DM, Assanis DN (1996) A global model for steady state and transient SI engine heat transfer studies. Technical report, SAE Technical Paper. https://doi.org/10.4271/960073

Bürkle S, Biondo L, Ding C-P, Honza R, Ebert Volker, Böhm Benjamin, Wagner Steven (2018) In-cylinder temperature measurements in a motored ic engine using tdlas. Flow Turbul Combust 101(1):139–159. https://doi.org/10.1007/s10494-017-9886-y

Kosmadakis GM, Pariotis EG, Rakoupoulos CD (2012) Comparative analysis of three simulation models applied on a motored internal combustion engine. Energy Convers Manag 60:45–55. https://doi.org/10.1016/j.enconman.2011.11.031

Bernard G, Lebas R, Demoulin F-X (2011) A 0d phenomenological model using detailed tabulated chemistry methods to predict diesel combustion heat release and pollutant emissions. Technical report, SAE Technical Paper. https://doi.org/10.4271/2011-01-0847

Ge H-W, Shi Y, Reitz RD, Wickman DD, Willems Werner (2009) Optimization of a HSDI diesel engine for passenger cars using a multi-objective genetic algorithm and multi-dimensional modeling. SAE Int J Engines 2(1):691–713. https://doi.org/10.4271/2009-01-0715

Vancoillie J, Sileghem L, Verhelst S (2014) Development and validation of a quasi-dimensional model for methanol and ethanol fueled si engines. Appl Energy 132:412–425. https://doi.org/10.1016/j.apenergy.2014.07.046

Verhelst S, Sheppard CGW (2009) Multi-zone thermodynamic modelling of spark-ignition engine combustion-an overview. Energy Convers Manag 50(5):1326–1335. https://doi.org/10.1016/j.enconman.2009.01.002

Zhang L (2018) Parallel simulation of engine in-cylinder processes with conjugate heat transfer modeling. Appl Thermal Eng 142:232–240. https://doi.org/10.1016/j.applthermaleng.2018.06.084

Broatch A, Olmeda P, García A, Salvador-Iborra J, Warey A (2017) Impact of swirl on in-cylinder heat transfer in a light-duty diesel engine. Energy 119:1010–1023. https://doi.org/10.1016/j.energy.2016.11.040

Rashedul HK, Kalam MA, Masjuki HH, Ashraful AM, Imtenan S, Sajjad H, Wee LK (2014) Numerical study on convective heat transfer of a spark ignition engine fueled with bioethanol. Int Commun Heat Mass Transf 58:33–39. https://doi.org/10.1016/j.icheatmasstransfer.2014.08.019

Benajes J, Olmeda P, Martín J, Blanco-Cavero D, Warey Alok (2017) Evaluation of swirl effect on the global energy balance of a HSDI diesel engine. Energy 122:168–181. https://doi.org/10.1016/j.energy.2017.01.082

Weller HG, Uslu S, Gosman AD, Maly RR, Herweg R, Heel B (1994) Prediction of combustion in homogeneous-charge spark-ignition engines. Int Symp COMODIA 94:163–169

Heywood John B (1994) Combustion and its modeling in spark-ignition engines. In: International symposium COMODIA, vol 94, pp 1–15

Reuss DL, Kuo T-W, Khalighi B, Haworth D, Rosalik M (1995) Particle image velocimetry measurements in a high-swirl engine used for evaluation of computational fluid dynamics calculations. Technical report, SAE Technical Paper. https://doi.org/10.4271/952381

Wang Z, Shuai S-J, Wang J-X, Tian G-H (2006) A computational study of direct injection gasoline hcci engine with secondary injection. Fuel 85(12–13):1831–1841. https://doi.org/10.1016/j.fuel.2006.02.013

Millo F, Luisi S, Borean F, Stroppiana A (2014) Numerical and experimental investigation on combustion characteristics of a spark ignition engine with an early intake valve closing load control. Fuel 121:298–310. https://doi.org/10.1016/j.fuel.2013.12.047

di Mare F, Knappstein R, Baumann M (2014) Application of les-quality criteria to internal combustion engine flows. Comput Fluids 89:200–213. https://doi.org/10.1016/j.compfluid.2013.11.003

Finol CA, Robinson K (2006) Thermal modelling of modern engines: a review of empirical correlations to estimate the in-cylinder heat transfer coefficient. Proc Inst Mech Eng Part D J Automob Eng 220(12):1765–1781. https://doi.org/10.1243/09544070JAUTO202

Romero CA (2009) Contribución al conocimiento del comportamiento térmico y la gestión térmica de los motores de combustión interna alternativos. PhD thesis, Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/4923

Fan X, Che Z, Wang T, Zhen L (2018) Numerical investigation of boundary layer flow and wall heat transfer in a gasoline direct-injection engine. Int J Heat Mass Transf 120:1189–1199. https://doi.org/10.1016/j.ijheatmasstransfer.2017.09.089

Ngang EA, Abbe CVN (2018) Experimental and numerical analysis of the performance of a diesel engine retrofitted to use LPG as secondary fuel. Appl Therm Eng 136:462–474. https://doi.org/10.1016/j.applthermaleng.2018.03.022

Soloiu V, Moncada JD, Gaubert R, Muiños M, Harp S, Ilie M, Zdanowicz A, Molina G (2018) LTC (low-temperature combustion) analysis of PCCI (premixed charge compression ignition) with n-butanol and cotton seed biodiesel versus combustion and emissions characteristics of their binary mixtures. Renew Energy 123:323–333. https://doi.org/10.1016/j.renene.2018.02.061

Renaud A, Ding C-P, Jakirlic S, Dreizler A, Böhm B (2018) Experimental characterization of the velocity boundary layer in a motored IC engine. Int J Heat Fluid Flow 71:366–377. https://doi.org/10.1016/j.ijheatfluidflow.2018.04.014

Torregrosa AJ, Broatch A, Olmeda P, Salvador-Iborra J, Warey A (2017) Experimental study of the influence of exhaust gas recirculation on heat transfer in the firedeck of a direct injection diesel engine. Energy Convers Manag 153:304–312. https://doi.org/10.1016/j.enconman.2017.10.003

Ma PC, Ewan T, Jainski C, Lu L, Dreizler Andreas, Sick Volker, Ihme Matthias (2017) Development and analysis of wall models for internal combustion engine simulations using high-speed micro-piv measurements. Flow Turbul Combust 98(1):283–309. https://doi.org/10.1007/s10494-016-9734-5

Cerdoun M, Carcasci C, Ghenaiet A (2016) An approach for the thermal analysis of internal combustion engines’ exhaust valves. Appl Ther Eng 102:1095–1108. https://doi.org/10.1016/j.applthermaleng.2016.03.105

Shayler PJ, Colechin MJF, Scarisbrick A (1996) Heat transfer measurements in the intake port of a spark ignition engine. Technical report, SAE Technical Paper. https://doi.org/10.4271/960273

Luján JM, Climent H, Olmeda P, Jiménez VD (2014) Heat transfer modeling in exhaust systems of high-performance two-stroke engines. Appl Therm Eng 69(1–2):96–104. https://doi.org/10.1016/j.applthermaleng.2014.04.045

Michl J, Neumann J, Rottengruber H, Wensing M (2016) Derivation and validation of a heat transfer model in a hydrogen combustion engine. Appl Therm Eng 98:502–512. https://doi.org/10.1016/j.applthermaleng.2015.12.062

Pischinger R, Klell M, Sams T (2009) Thermodynamik der Verbrennungskraftmaschine. Springer, Wien. https://doi.org/10.1007/978-3-211-99277-7

Annand WJD (1963) Heat transfer in the cylinders of reciprocating internal combustion engines. Proc Inst Mech Eng 177(1):973–996. https://doi.org/10.1243/PIME_PROC_1963_177_069_02

Woschni G (1967) A universally applicable equation for the instantaneous heat transfer coefficient in the internal combustion engine. Technical report, SAE Technical paper. https://doi.org/10.4271/670931

Han SB, Chung YJ, Kwon YJ, Lee S (1997) Empirical formula for instantaneous heat transfer coefficient in spark ignition engine. Technical report, SAE Technical Paper. https://doi.org/10.4271/972995

De Cuyper T, Broekaert S, Chana K, De Paepe M, Verhelst S (2017) Evaluation of empirical heat transfer models using TFG heat flux sensors. Appl Therm Eng 118:561–569. https://doi.org/10.1016/j.applthermaleng.2017.02.049

Irimescu A, Merola SS, Tornatore C, Valentino G (2015) Development of a semi-empirical convective heat transfer correlation based on thermodynamic and optical measurements in a spark ignition engine. Appl Energy 157:777–788. https://doi.org/10.1016/j.apenergy.2015.02.050

Martins JJG, Finlay IC (1990) Heat transfer to air-ethanol and air-methanol sprays flowing in heated ducts and across heated intake valves. Technical report, SAE Technical Paper. https://doi.org/10.4271/900583

Torregrosa AJ, Olmeda P, Degraeuwe B, Reyes M (2006) A concise wall temperature model for DI diesel engines. Appl Therm Eng 26(11–12):1320–1327. https://doi.org/10.1016/j.applthermaleng.2005.10.021

Baker DM, Assanis DN (1994) A methodology for coupled thermodynamic and heat transfer analysis of a diesel engine. Appl Math Modell 18:590–601. https://doi.org/10.1016/0307-904X(94)90317-4

Torregrosa AJ, Olmeda P, Martín J, Romero C (2011) A tool for predicting the thermal performance of a diesel engine. Heat Transf Eng 32(10):891–904. https://doi.org/10.1080/01457632.2011.548639

Shayler PJ, Christian SJ, Ma T (1993) A model for the investigation of temperature, heat flow and friction characteristics during engine warm-up. Technical report, SAE Technical Paper. https://doi.org/10.4271/931153

Jarrier L, Champoussin JC, Yu R, Gentile D (2000) Warm-up of a DI diesel engine: experiment and modeling. Technical report, SAE Technical Paper. https://doi.org/10.4271/2000-01-0299

Jafari A, Hannani SK (2006) Effect of fuel and engine operational characteristics on the heat loss from combustion chamber surfaces of SI engines. Int Commun Heat Mass Transf 33(1):122–134. https://doi.org/10.1016/j.icheatmasstransfer.2005.08.008

Trujillo EC, Jiménez-Espadafor FJ, Villanueva JAB, García MT (2011) Methodology for the estimation of cylinder inner surface temperature in an air-cooled engine. Appl Therm Eng 31:1474–1481. https://doi.org/10.1016/j.applthermaleng.2011.01.025

Trujillo EC, Jiménez-Espadafor FJ, Villanueva JAB, García MT (2012) Methodology for the estimation of head inner surface temperature in an air-cooled engine. Appl Therm Eng 35:202–211. https://doi.org/10.1016/j.applthermaleng.2011.10.032

Cerit M, Coban M (2014) Temperature and thermal stress analyses of a ceramic-coated aluminum alloy piston used in a diesel engine. Int J Therm Sci 77:11–18. https://doi.org/10.1016/j.ijthermalsci.2013.10.009

Yaohui L, Zhang X, Xiang P, Dong D (2017) Analysis of thermal temperature fields and thermal stress under steady temperature field of diesel engine piston. Appl Therm Eng 113:796–812. https://doi.org/10.1016/j.applthermaleng.2016.11.070

Goudarzi K, Moosaei A, Gharaati M (2015) Applying artificial neural networks (ANN) to the estimation of thermal contact conductance in the exhaust valve of internal combustion engine. Appl Therm Eng 87:688–697. https://doi.org/10.1016/j.applthermaleng.2015.05.060

Finlay IC, Harris D, Boam DJ, Parks BI (1985) Factors influencing combustion chamber wall temperatures in a liquid-cooled, automotive, spark-ignition engine. Proc Inst Mech Eng Part D Transp Eng 199(3):207–214. https://doi.org/10.1243/PIME_PROC_1985_199_158_01

Chen JC (1966) Correlation for boiling heat transfer to saturated fluids in convective flow. Ind Eng Chem Process Des Dev 5(3):322–329. https://doi.org/10.1021/i260019a023

Robinson K, Hawley JG, Hammond GP, Owen NJ (2003a) Convective coolant heat transfer in internal combustion engines. Proc Inst Mech Eng Part D J Autom Eng 217(2):133–146. https://doi.org/10.1177/095440700321700207

Robinson K, Campbell NAF, Hawley JG, Tilley DG (1999) A review of precision engine cooling. Technical report, SAE Technical Paper. https://doi.org/10.4271/1999-01-0578

Kandlikar SG (1998) Heat transfer characteristics in partial boiling, fully developed boiling, and significant void flow regions of subcooled flow boiling. J Heat Transf 120(2):395–401. https://doi.org/10.1115/1.2824263

Robinson K, Hawley JG, Campbell NAF (2003b) Experimental and modelling aspects of flow boiling heat transfer for application to internal combustion engines. Proc Inst Mech Eng Part D J Autom Eng 217(10):877–889. https://doi.org/10.1243/095440703769683289

Kandlikar SG, Bulut M (2003) An experimental investigation on flow boiling of ethylene-glycol/water mixtures. J Heat Transf 125(2):317–325. https://doi.org/10.1115/1.1561816

Steiner H, Brenn G, Ramstorfer F, Breitschädel B (2011) Increased cooling power with nucleate boiling flow in automotive engine applications. In: Chiaberge M (ed) New trends and developments in automotive system engineering, chapter 13. IntechOpen, Rijeka

Li Z, Huang RH, Wang ZW (2012) Subcooled boiling heat transfer modelling for internal combustion engine applications. Proc Inst Mech Eng Part D J Autom Eng 226(3):301–311. https://doi.org/10.1177/0954407011417349

Torregrosa AJ, Broatch A, Olmeda P, Cornejo O (2014) Experiments on subcooled flow boiling in ic engine-like conditions at low flow velocities. Exp Therm Fluid Sci 52:347–354. https://doi.org/10.1016/j.expthermflusci.2013.10.004

Mehdipour R, Baniamerian Z, Delauré Y (2016) Three dimensional simulation of nucleate boiling heat and mass transfer in cooling passages of internal combustion engines. Heat Mass Transf 52(5):957–968. https://doi.org/10.1007/s00231-015-1611-6

Torregrosa AJ, Broatch A, Olmeda P, Martín J (2010) A contribution to film coefficient estimation in piston cooling galleries. Exp Therm Fluid Sci 34(2):142–151. https://doi.org/10.1016/j.expthermflusci.2009.10.003

Liu YC, Guessous L, Sangeorzan BP, Alkidas AC (2014) Laboratory experiments on oil-jet cooling of internal combustion engine pistons: area-average correlation of oil-jet impingement heat transfer. J Energy Eng 141(2):C4014003. https://doi.org/10.1061/(ASCE)EY.1943-7897.0000227

Peng W, Jizu L, Minli B, Yuyan W, Chengzhi Hu, Liang Zhang (2014) Numerical simulation on the flow and heat transfer process of nanofluids inside a piston cooling gallery. Numer Heat Transf Part A Appl 65(4):378–400. https://doi.org/10.1080/10407782.2013.832071

Payri F, Olmeda P, Martín J, Carreño R (2014) A new tool to perform global energy balances in di diesel engines. SAE Int J Engines 7(1):43–59. https://doi.org/10.4271/2014-01-0665

Kikusato A, Kusaka J, Daisho Y (2015) A numerical study on predicting combustion chamber wall surface temperature distributions in a diesel engine and their effects on combustion, emission and heat loss characteristics by using a 3d-cfd code combined with a detailed heat transfer model. Technical report, SAE Technical Paper. https://doi.org/10.4271/2015-01-1847

Martín J, Novella R, García A, Carreño R, Heuser Benedikt, Kremer Florian, Pischinger Stefan (2016) Thermal analysis of a light-duty ci engine operating with diesel-gasoline dual-fuel combustion mode. Energy 115:1305–1319. https://doi.org/10.1016/j.energy.2016.09.021

Broatch A, Olmeda P, Margot X, Escalona J (2019) New approach to study the heat transfer in internal combustion engines by 3d modelling. In J Therm Sci 138:405–415. https://doi.org/10.1016/j.ijthermalsci.2019.01.006

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem