- -

Induction of auxin biosynthesis and WOX5 repression mediate changes in root development in Arabidopsis exposed to chitosan

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Induction of auxin biosynthesis and WOX5 repression mediate changes in root development in Arabidopsis exposed to chitosan

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Lopez-Moya, Federico es_ES
dc.contributor.author Escudero, Nuria es_ES
dc.contributor.author Zavala-Gonzalez, Ernesto A. es_ES
dc.contributor.author Esteve-Bruna, David es_ES
dc.contributor.author BLAZQUEZ RODRIGUEZ, MIGUEL ANGEL es_ES
dc.contributor.author ALABADÍ DIEGO, DAVID es_ES
dc.contributor.author Lopez-Llorca, Luis V. es_ES
dc.date.accessioned 2020-11-05T04:33:50Z
dc.date.available 2020-11-05T04:33:50Z
dc.date.issued 2017-12-01 es_ES
dc.identifier.issn 2045-2322 es_ES
dc.identifier.uri http://hdl.handle.net/10251/154117
dc.description.abstract [EN] Chitosan is a natural polymer with applications in agriculture, which causes plasma membrane permeabilisation and induction of intracellular reactive oxygen species (ROS) in plants. Chitosan has been mostly applied in the phylloplane to control plant diseases and to enhance plant defences, but has also been considered for controlling root pests. However, the effect of chitosan on roots is virtually unknown. In this work, we show that chitosan interfered with auxin homeostasis in Arabidopsis roots, promoting a 2-3 fold accumulation of indole acetic acid (IAA). We observed chitosan dose-dependent alterations of auxin synthesis, transport and signalling in Arabidopsis roots. As a consequence, high doses of chitosan reduce WOX5 expression in the root apical meristem and arrest root growth. Chitosan also propitiates accumulation of salicylic (SA) and jasmonic (JA) acids in Arabidopsis roots by induction of genes involved in their biosynthesis and signalling. In addition, high-dose chitosan irrigation of tomato and barley plants also arrests root development. Tomato root apices treated with chitosan showed isodiametric cells respect to rectangular cells in the controls. We found that chitosan causes strong alterations in root cell morphology. Our results highlight the importance of considering chitosan dose during agronomical applications to the rhizosphere. es_ES
dc.description.sponsorship This work was supported by AGL 2015 66833-R Grant from the Spanish Ministry of Economy and Competitiveness Grant AGL 2015. We would like to thank Drs Isabel Lopez-Diaz and Esther Carrera for plant hormone quantitation (IBMCP, Valencia, Spain). Part of this work was filed for a patent (P201431399) by L. V. Lopez-Llorca, F. Lopez-Moya and N. Escudero as inventors. We would like to thank Dr Michael Kershaw (University of Exeter) for his English revision and critical comments of the manuscript. We also thank Ms Marta Suarez-Fernandez (University of Alicante) and Mr Alfonso Prieto for their technical support. All the authors reviewed and approved the manuscript. es_ES
dc.language Inglés es_ES
dc.publisher Nature Publishing Group es_ES
dc.relation.ispartof Scientific Reports es_ES
dc.rights Reconocimiento (by) es_ES
dc.title Induction of auxin biosynthesis and WOX5 repression mediate changes in root development in Arabidopsis exposed to chitosan es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1038/s41598-017-16874-5 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//AGL2015-66833-R/ES/MODULACION DE INTERACCIONES RIZOSFERICAS PARA PROMOVER CRECIMIENTO, COSECHA Y DEFENSAS FRENTE A PATOGENOS RADICULARES DE CULTIVOS/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes es_ES
dc.description.bibliographicCitation Lopez-Moya, F.; Escudero, N.; Zavala-Gonzalez, EA.; Esteve-Bruna, D.; Blazquez Rodriguez, MA.; Alabadí Diego, D.; Lopez-Llorca, LV. (2017). Induction of auxin biosynthesis and WOX5 repression mediate changes in root development in Arabidopsis exposed to chitosan. Scientific Reports. 7:1-14. https://doi.org/10.1038/s41598-017-16874-5 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1038/s41598-017-16874-5 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 14 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 7 es_ES
dc.identifier.pmid 29196703 es_ES
dc.identifier.pmcid PMC5711845 es_ES
dc.relation.pasarela S\356352 es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Savary, S., Ficke, A., Aubertot, J.-N. & Hollier, C. Crop losses due to diseases and their implications for global food production losses and food security. Food Sec. 4(4), 519–37 (2012). es_ES
dc.description.references Pimentel, D., Zuniga, R. & Morrison, D. Update on the environmental and economic costs associated with alien-invasive species in the United States. Ecol. Econ. 52(3), 273–88 (2005). es_ES
dc.description.references El-Hadrami, A. & Adam, L. R. Hadrami El, I. & Daayf, F. Chitosan in plant protection. Mar. Drugs. 8(4), 968–987 (2010). es_ES
dc.description.references Kumar, R. M. N. V. A review of chitin and chitosan applications. React. Funct. Poly. 46(1), 1–27 (2000). es_ES
dc.description.references Mayakrishnan, V., Kannappan, P., Abdullah, N. & Ali, A. A. B. Cardioprotective activity of polysaccharides derived from marine algae: an overview. Trends Food Sci. Technol. 30, 98–104 (2013). es_ES
dc.description.references Lopez-Moya, F. et al. Carbon and nitrogen limitation increase chitosan antifungal activity in Neurospora crassa and fungal human pathogens. Fun. Biol. 119(2-3), 154–69 (2015). es_ES
dc.description.references Benhamou, N. & Theriault, G. Treatment with chitosan enhances resistance of tomato plants to the crown and root rot pathogen Fusarium oxysporum f. sp. radicis-lycopersici. Physiol Mol Plant Path. 44(1), 33–52 (1992). es_ES
dc.description.references Ohta, K., Taniguchi, A., Konishi, N. & Hosoki, T. Chitosan treatment affects plant growth and flower quality in Eustoma grandiflorum. HortScience. 34(2), 233–234 (1999). es_ES
dc.description.references Van, S. N., Minh, H. D. & Anh, D. N. Study on chitosan nanoparticles on biophysical characteristics and growth of Robusta coffee in green house. Biocatal Agric Biotechnol. 2(4), 289–294 (2013). es_ES
dc.description.references Kananont, N., Pichvangkura, R., Chanprame, S., Chadchawan, S. & Limpanavech, P. Chitosan specificity for the in vitro seed germination of two Dendrobium orchids (Asparagales: Orchidaceae). Sci. Hortic. 124(2), 239–247 (2010). es_ES
dc.description.references Malerba, M. & Cerana, R. Chitosan Effects on Plant Systems. Int. J. Mol. Sci. 17(7), pii: E996 (2016). es_ES
dc.description.references Uthairatanakij, A., da Silva, J. A. T. & Obsuwan, K. Chitosan for improving orchid production and quality. Orchid Sci. Biotechnol. 1(1), 1–5 (2007). es_ES
dc.description.references Limpanavech, P. et al. Chitosan effects on floral production, gene expression, and anatomical changes in the Dendrobium orchid. Sci. Hortic. 116(1), 65–72 (2008). es_ES
dc.description.references Nge, K. L., New, N., Chandrkrachang, S. & Stevens, W. F. Chitosan as a growth stimulator in orchid tissue culture. Plant Sci. 170(6), 1185–90 (2006). es_ES
dc.description.references Khan, T. A., Peh, K. K. & Ch’ng, H. S. Reporting degree of deacetylation values of chitosan: the influence of analytical methods. J. Pharma. Sci. 5(3), 205–12 (2002). es_ES
dc.description.references Iriti, M. & Faoro, F. Bioactivity of grape chemicals for human health. Nat. Prod. Commun. 4(5), 611–34 (2009). es_ES
dc.description.references Pitta-Alvarez, S. I. & Giulietti, A. M. Influence of chitosan, acetic acid and citric acid on growth and tropane alkaloid production in transformed roots of Brugmansia candida effect of medium pH and growth phase. Plant Cell Tissue Organ Cult. 59(1), 31–38 (1999). es_ES
dc.description.references Sivanandhan, G. et al. Chitosan enhances with anolides production in adventitious root cultures of Withania somnifera (L.) Dunal. Ind. Crops Prod. 37, 124–129 (2012). es_ES
dc.description.references Chatelain, P. G., Pintado, M. E. & Vasconcelos, M. W. Evaluation of chitooligosaccharide application on mineral accumulation and plant growth in Phaseolus vulgaris. Plant Sci. 214(15), 134–40 (2014). es_ES
dc.description.references El-Tantawi, E. M. Behaviour of tomato plants as affected by spraying with chitosan and aminofort as natural stimulator substances under application of soil organic amendments. Pak. J. Biol. Sci. 12(17), 1164–73 (2009). es_ES
dc.description.references Sharp, R. G. 2013. A review of the applications of chitin and its derivatives in agriculture to modify plant-microbial interactions and improve crop yields. Agronomy. 3, 757–793 (2013). es_ES
dc.description.references Aranega-Bou, P., de la O Leyva, M., Finiti, I., García-Agustín, P. & González-Bosch, C. Priming of plant resistance by natural compounds. Hexanoic acid as a model. Front. Plant Sci. 1(5), 488 (2014). es_ES
dc.description.references Kwak, J. M., Nguyen, V. & Schroeder, J. I. The role of reactive oxygen species in hormonal responses. Plant Physiol. 141(2), 323–9 (2006). es_ES
dc.description.references Lopez-Moya, F. & Lopez-Llorca, L. V. Omics for investigating chitosan as an antifungal and gene modulator. J. Fungi. 2(1), 1–11 (2016). es_ES
dc.description.references Issak, M. et al. Neither endogenous abscisic acid nor endogenous jasmonate is involved in salicylic acid-, yeast elicitor-, orchitosan-induced stomatal closure in Arabidopsis thaliana. Biosc. Biotechnol. Biochem. 77(5), 1111–3 (2013). es_ES
dc.description.references Vidhyasekaran, P. Switching on Plant Innate Immunity Signaling Systems: Bioengineering and Molecular Manipulation Of PAMP PIMP PRR Signaling Complex. Signaling and Communication In Plants. Chapt. 3. Switching on Plant Immune Signaling Systems using Microbe-Associated Molecular Patterns/section 3.6 Manipulation of Plant Immune System using Chitosan 144–148, (Springer, 2016). es_ES
dc.description.references Baque, Md. A., Shiragi, Md. H. K., Lee, E. J. & Paek, K.-Y. Elicitor effect of chitosan and pectin on the biosynthesis of anthraquinones, phenolics and flavonoids in adventitious root suspension cultures of Morinda citrifolia (L.). Aust. J. Crop Sci. 6(9), 1349–1355 (2012). es_ES
dc.description.references Khalil, M. S. & Badawy, M. E. I. Nematicidal activity of a biopolymer chitosan at different molecular weights against root-knot nematode. Meloidogyne incognita. Plant Prot. Sci. 48(4), 170–178 (2012). es_ES
dc.description.references Sarkar, A. K. et al. Conserved factors regulate signalling in Arabidopsis thaliana shoot and root stem cell organizers. Nature. 446(7137), 811–4 (2007). es_ES
dc.description.references Ding, Z. & Friml, J. Auxin regulates distal stem cell differentiation in Arabidopsis roots. Proc. Natl. Acad. Sci. USA 107(26), 12046–12051 (2010). es_ES
dc.description.references Tian, H. et al. WOX5-IAA17 feedback circuit-mediated cellular auxin response is crucial for the patterning of root stem cell niches in Arabidopsis. Mol. Plant. 7(2), 277–89 (2014). es_ES
dc.description.references Tiwari, S. B., Hagen, G. & Guilfoyle, T. The roles of auxin response factor domains in auxin-responsive transcription. Plant Cell. 15(2), 533–43 (2003). es_ES
dc.description.references Doares, S. H., Syrovets, T., Weiler, E. W. & Ryan, C. A. Oligogalacturonides and chitosan activate plant defensive genes through the octadecanoid pathway. Proc. Natl. Acad. Sci. USA 92(10), 4095–4098 (1995). es_ES
dc.description.references Chandra, S. et al. Chitosan nanoparticles: A positive modulator of innate immune responses in plants. Sci. Rep. 5, 15195 (2015). es_ES
dc.description.references Escudero, N. et al. Chitosan enhances parasitism of Meloidogyne javanica eggs by the nematophagous fungus Pochonia chlamydosporia. Fun. Biol. 120(4), 572–85 (2016). es_ES
dc.description.references Escudero, N. et al. Chitosan Increases Tomato Root Colonization by Pochonia chlamydosporia and Their Combination Reduces Root-Knot Nematode Damage. Front. Plant Sci. 8, 1415 (2017). es_ES
dc.description.references Atkinson, N. J., Lilley, C. J. & Urwin, P. E. Identification of Genes Involved in the Response of Arabidopsis to Simultaneous Biotic and Abiotic Stresses. Plant Physiol. 162(4), 2028–2041 (2013). es_ES
dc.description.references Kazan, K. Auxin and the integration of environmental signals into plant root development. Ann Bot 112(9), 1655–1665 (2013). es_ES
dc.description.references Overvoorde, P., Fukaki, H. & Beeckman, T. Auxin control of root development. Cold Spring Harb. Perspect. Biol. 2(6), a001537 (2010). es_ES
dc.description.references Petricka, J. J., Winter, C. M. & Benfey, P. N. Control of Arabidopsis Root Development. Ann. Rev. Plant Biol. 63, 563–590 (2012). es_ES
dc.description.references Iriti, M. & Faoro, F. Chitosan as a MAMP, searching for a PRR. Plant Signal Behav. 4(1), 66–68 (2009). es_ES
dc.description.references Jones, A. M. A new look at stress: abscisic acid patterns and dynamics at high-resolution. New Phytol. 210(1), 38–44 (2015). es_ES
dc.description.references Wasternack, C. Jasmonates: An Update on Biosynthesis, Signal Transduction and Action in Plant Stress Response, Growth and Development. Ann. Bot. 100(4), 681–697 (2007). es_ES
dc.description.references Wasternack, C. & Hause, B. Jasmonates: biosynthesis, perception, signal transduction and action in plant stress response, growth and development. Ann. Bot. 111(6), 1021–1058 (2013). es_ES
dc.description.references Kazan, K. Diverse roles of jasmonates and ethylene in abiotic stress tolerance. Trends Plant Sci. 20(4), 219–29 (2015). es_ES
dc.description.references Ning, Y., Liu, W. & Wang, G. L. Balancing Immunity and Yield in Crop Plants. Trends Plant Sci., 1385(17), 30206–6 (2017). pii: S1360. es_ES
dc.description.references Zhang, R. Q., Zhu, H. H., Zhao, H. Q. & Yao, Q. Arbuscular mycorrhizal fungal inoculation increases phenolic synthesis in clover roots via hydrogen peroxide, salicylic acid and nitric oxide signaling pathways. J. Plant Physiol. 170(1), 74–9 (2013). es_ES
dc.description.references Dar, T. A., Uddin, M., Masroor, A. M., Hakeem, K. R. & Jaleel, H. 2015. Jasmonates counter plant stress: A Review. Environ. Exp. Bot. 115, 49–57 (2015). es_ES
dc.description.references Kazan, K. & Lyons, R. 2016. The link between flowering time and stress tolerance. J Exp Bot. 67(1), 47–60 (2016). es_ES
dc.description.references Jeong, S. et al. Rootin, a compound that inhibits root development through modulating PIN-mediated auxin distribution. Plant Sci. 233, 116–26 (2015). es_ES
dc.description.references Amborabé, B. E., Bonmort, J., Fleurat-Lessard, P. & Roblin, G. Early events induced by chitosan on plant cells. J. Exp. Bot. 59(9), 2317–2324 (2008). es_ES
dc.description.references Chen, X. Y. & Kim, J. Y. Callose synthesis in higher plants. Plant Signal Behav. 4(6), 489–492 (2009). es_ES
dc.description.references Vasil’ev, L. A. et al. Chitosan-induced programmed cell death in plants. Biochem (Mosc). 74(9), 1035–43 (2009). es_ES
dc.description.references Friml, J. et al. Efflux-dependent auxin gradients establish the apical-basal axis of Arabidopsis. Nature. 426(6963), 147–153 (2003). es_ES
dc.description.references Xu, J. et al. A molecular framework for plant regeneration. Science. 311(5759), 385–8 (2006). es_ES
dc.description.references Cheng, Y., Dai, X. & Zhao, Y. Auxin biosynthesis by the YUCCA flavin monooxygenases controls the formation of floral organs and vascular tissues in Arabidopsis. Genes Dev. 20(13), 1790–1799 (2006). es_ES
dc.description.references Cao, H., Bowling, S. A., Gordon, A. S. & Dong, X. Characterization of an Arabidopsis mutant that is nonresponsive to inducers of Systemic Acquired Resistance. Plant Cell. 6(11), 1583–92 (1994). es_ES
dc.description.references Dobón, A., Wulff, B. B., Canet, J. V., Fort, P. & Tornero, P. An allele of Arabidopsis COI1 with hypo- and hypermorphic phenotypes in plant growth, defence and fertility. Plos One. 8(1), e55115 (2013). es_ES
dc.description.references Fernández-Calvo, P. et al. The Arabidopsis bHLH transcription factors MYC3 and MYC4 are targets of JAZ repressors and act additively with MYC2 in the activation of jasmonate responses. Plant Cell. 23(2), 701–15 (2011). es_ES
dc.description.references Ripoll, J. J., Ferrándiz, C., Martínez-Laborda, A. & Vera, A. PEPPER, a novel K-homology domain gene, regulates vegetative and gynoecium development in Arabidopsis. Dev. Biol. 289(2), 346–59 (2006). es_ES
dc.description.references Bordallo, J. J. et al. Colonization of plant roots by egg-parasitic and nematode-trapping fungi. New Phytol. 154(2), 491–499 (2002). es_ES
dc.description.references Palma-Guerrero, J., Jansson, H. B., Salinas, J. & Lopez-Llorca, L. V. Effect of chitosan on hyphal growth and spore germination of plant pathogenic and biocontrol fungi. J. App. Microbiol. 104(2), 541–53 (2008). es_ES
dc.description.references Seo, M., Jikumaru, Y. & Kamiya, Y. Profiling of hormones and related metabolites in seed dormancy and germination studies. Methods Mol. Biol. 773, 99–111 (2011). es_ES
dc.description.references Sabatini, S. et al. An auxin-dependent distal organizer of pattern and polarity in the Arabidopsis root. Cell. 99, 463–472 (1999). es_ES
dc.description.references Weigel, D. & Glazebrook, J. Arabidopsis: A Laboratory Manual. (Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press, 2002). es_ES
dc.description.references Livak, K. J. & Schmittgen, T. D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods. 25, 402–408 (2001). es_ES
dc.description.references Escudero, N. & Lopez-Llorca, L. V. Effects on plant growth and root-knot nematode infection of an endophytic GFP transformant of the nematophagous fungus Pochonia chlamydosporia. Symbiosis. 57(1), 33–42 (2012). es_ES
dc.description.references Maciá-Vicente, J. G., Jansson, H. B., Talbot, N. J. & Lopez-Llorca, L. V. Real-time PCR quantification and live-cell imaging of endophytic colonization of barley (Hordeum ytvulgare) roots by Fusarium equiseti and Pochonia chlamydosporia. New Phytolo. 182(1), 213–28 (2009). es_ES
dc.description.references Underwood, A. J. Experiments in ecology: their logical design and interpretation using analysis of variance. (Cambridge University Press, Cambridge, 1997). es_ES
dc.description.references Bartlett, M. S. 1937. Properties of sufficiency and statistical tests. Proc. Royal. Soci. London Math. 160, 268–282 (1937). es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem