Mostrar el registro sencillo del ítem
dc.contributor.author | Herance, Jose Raul | es_ES |
dc.contributor.author | García Gómez, Hermenegildo | es_ES |
dc.contributor.author | Guitierrez Carcedo, Patricia | es_ES |
dc.contributor.author | Navalón Oltra, Sergio | es_ES |
dc.contributor.author | Pineda-Lucena, Antonio | es_ES |
dc.contributor.author | Palomino-Schätzlein, M. | es_ES |
dc.date.accessioned | 2020-11-05T04:33:59Z | |
dc.date.available | 2020-11-05T04:33:59Z | |
dc.date.issued | 2019-02-21 | es_ES |
dc.identifier.issn | 0003-2654 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/154119 | |
dc.description.abstract | [EN] Gold nanoparticles have high potential in the biomedical area, especially in disease diagnosis and treatment. The application of these nanoparticles requires the presence of stabilizers to avoid their agglomeration. Nowadays, there is a lack of reliable methods for characterising the effect of stabilised nanoparticles on biological systems. To this end, in this study, we apply an experimental approach based on nuclear magnetic resonance spectroscopy to study the effect of gold nanoparticles, stabilised with cerium oxide or chitosan, on a human cancer cell model. The results showed that both systems have a significant effect, even at non-toxic levels, on the cellular antioxidant system. However, although particles functionalised with chitosan exerted a strong effect on the aerobic respiration, nanoparticles stabilised with cerium oxide had a higher impact on the mechanisms associated with anaerobic energy production. Therefore, even though both systems contained similar gold nanoparticles, the presence of different stabilizers strongly influenced their mode of action and potential applications in biomedicine. | es_ES |
dc.description.sponsorship | This work was supported by the Carlos III Health Institute, the European Regional Development Fund (PI16/02064 and CP13/00252) and the Spanish Ministerio de Economia y Competitividad (SAF2014-53977-R, SAF2017-89229-R and RD12/0036/0025). In addition, JRH is a recipient of a contract from the Ministry of Health of the Carlos III Health Institute. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | The Royal Society of Chemistry | es_ES |
dc.relation | info:eu-repo/grantAgreement/MINECO//PI16%2F02064/ES/Resistencia insulínica en miocardio como factor de riesgo cardiovascular en Diabetes Mellitus tipo 2/ | es_ES |
dc.relation.ispartof | The Analyst | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Cells | es_ES |
dc.subject | Cytotoxicity | es_ES |
dc.subject | Perturbations | es_ES |
dc.subject | Proteomics | es_ES |
dc.subject | Reveals | es_ES |
dc.subject | Assay | es_ES |
dc.subject | Ceria | es_ES |
dc.subject.classification | QUIMICA ORGANICA | es_ES |
dc.title | A translational approach to assess the metabolomic impact of stabilized gold nanoparticles by NMR spectroscopy | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1039/c8an01827h | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//SAF2014-53977-R/ES/HERRAMIENTAS DE RMN PARA EL DESARROLLO DE UNA PLATAFORMA PARA LA IDENTIFIC. DE DIANAS, LA EVAL. DE FARMACOS Y LA PERSONAL. DE TRATAMIENTOS BASADA EN APROX. METABOLOMICAS/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//CP13%2F00252/ES/CP13%2F00252/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/SAF2017-89229-R/ES/CONTRIBUCIONES DE LA METABOLOMICA POR RMN A LA CLASIFICACION CLINICA DE PACIENTES: UN PASO ADELANTE HACIA LA MEDICINA DE PRECISION/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//RD12%2F0036%2F0025/ES/Cáncer/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Química - Departament de Química | es_ES |
dc.description.bibliographicCitation | Herance, JR.; García Gómez, H.; Guitierrez Carcedo, P.; Navalón Oltra, S.; Pineda-Lucena, A.; Palomino-Schätzlein, M. (2019). A translational approach to assess the metabolomic impact of stabilized gold nanoparticles by NMR spectroscopy. The Analyst. 144(4):1265-1274. https://doi.org/10.1039/c8an01827h | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1039/c8an01827h | es_ES |
dc.description.upvformatpinicio | 1265 | es_ES |
dc.description.upvformatpfin | 1274 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 144 | es_ES |
dc.description.issue | 4 | es_ES |
dc.identifier.pmid | 30547176 | es_ES |
dc.relation.pasarela | S\406920 | es_ES |
dc.contributor.funder | Instituto de Salud Carlos III | es_ES |
dc.contributor.funder | European Regional Development Fund | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.description.references | Shi, J., Kantoff, P. W., Wooster, R., & Farokhzad, O. C. (2016). Cancer nanomedicine: progress, challenges and opportunities. Nature Reviews Cancer, 17(1), 20-37. doi:10.1038/nrc.2016.108 | es_ES |
dc.description.references | Gioria, S., Lobo Vicente, J., Barboro, P., La Spina, R., Tomasi, G., Urbán, P., … Chassaigne, H. (2016). A combined proteomics and metabolomics approach to assess the effects of gold nanoparticlesin vitro. Nanotoxicology, 10(6), 736-748. doi:10.3109/17435390.2015.1121412 | es_ES |
dc.description.references | Beik, J., Khademi, S., Attaran, N., Sarkar, S., Shakeri-Zadeh, A., Ghaznavi, H., & Ghadiri, H. (2017). A Nanotechnology-based Strategy to Increase the Efficiency of Cancer Diagnosis and Therapy: Folate-conjugated Gold Nanoparticles. Current Medicinal Chemistry, 24(39). doi:10.2174/0929867324666170810154917 | es_ES |
dc.description.references | Nagi, N. M. S., Khair, Y. A. M., & Abdalla, A. M. E. (2017). Capacity of gold nanoparticles in cancer radiotherapy. Japanese Journal of Radiology, 35(10), 555-561. doi:10.1007/s11604-017-0671-6 | es_ES |
dc.description.references | Gharatape, A., & Salehi, R. (2017). Recent progress in theranostic applications of hybrid gold nanoparticles. European Journal of Medicinal Chemistry, 138, 221-233. doi:10.1016/j.ejmech.2017.06.034 | es_ES |
dc.description.references | Fang, J., Nakamura, H., & Maeda, H. (2011). The EPR effect: Unique features of tumor blood vessels for drug delivery, factors involved, and limitations and augmentation of the effect. Advanced Drug Delivery Reviews, 63(3), 136-151. doi:10.1016/j.addr.2010.04.009 | es_ES |
dc.description.references | Haume, K., Rosa, S., Grellet, S., Śmiałek, M. A., Butterworth, K. T., Solov’yov, A. V., … Mason, N. J. (2016). Gold nanoparticles for cancer radiotherapy: a review. Cancer Nanotechnology, 7(1). doi:10.1186/s12645-016-0021-x | es_ES |
dc.description.references | Azevedo, R. S. S., de Sousa, J. R., Araujo, M. T. F., Martins Filho, A. J., de Alcantara, B. N., Araujo, F. M. C., … Vasconcelos, P. F. C. (2018). In situ immune response and mechanisms of cell damage in central nervous system of fatal cases microcephaly by Zika virus. Scientific Reports, 8(1). doi:10.1038/s41598-017-17765-5 | es_ES |
dc.description.references | Lin, Y., Wu, Z., Wen, J., Ding, K., Yang, X., Poeppelmeier, K. R., & Marks, L. D. (2015). Adhesion and Atomic Structures of Gold on Ceria Nanostructures: The Role of Surface Structure and Oxidation State of Ceria Supports. Nano Letters, 15(8), 5375-5381. doi:10.1021/acs.nanolett.5b02694 | es_ES |
dc.description.references | Menchón, C., Martín, R., Apostolova, N., Victor, V. M., Álvaro, M., Herance, J. R., & García, H. (2012). Gold Nanoparticles Supported on Nanoparticulate Ceria as a Powerful Agent against Intracellular Oxidative Stress. Small, 8(12), 1895-1903. doi:10.1002/smll.201102255 | es_ES |
dc.description.references | Tiwari, P., Vig, K., Dennis, V., & Singh, S. (2011). Functionalized Gold Nanoparticles and Their Biomedical Applications. Nanomaterials, 1(1), 31-63. doi:10.3390/nano1010031 | es_ES |
dc.description.references | Fathy, M. M., Mohamed, F. S., Elbialy, N., & Elshemey, W. M. (2018). Multifunctional Chitosan-Capped Gold Nanoparticles for enhanced cancer chemo-radiotherapy: An invitro study. Physica Medica, 48, 76-83. doi:10.1016/j.ejmp.2018.04.002 | es_ES |
dc.description.references | Guo, X., Zhuang, Q., Ji, T., Zhang, Y., Li, C., Wang, Y., … Du, L. (2018). Multi-functionalized chitosan nanoparticles for enhanced chemotherapy in lung cancer. Carbohydrate Polymers, 195, 311-320. doi:10.1016/j.carbpol.2018.04.087 | es_ES |
dc.description.references | Lee, Y.-H., Kim, J.-S., Kim, J.-E., Lee, M.-H., Jeon, J.-G., Park, I.-S., & Yi, H.-K. (2017). Nanoparticle mediated PPARγ gene delivery on dental implants improves osseointegration via mitochondrial biogenesis in diabetes mellitus rat model. Nanomedicine: Nanotechnology, Biology and Medicine, 13(5), 1821-1832. doi:10.1016/j.nano.2017.02.020 | es_ES |
dc.description.references | Sun, I.-C., Na, J. H., Jeong, S. Y., Kim, D.-E., Kwon, I. C., Choi, K., … Kim, K. (2013). Biocompatible Glycol Chitosan-Coated Gold Nanoparticles for Tumor-Targeting CT Imaging. Pharmaceutical Research, 31(6), 1418-1425. doi:10.1007/s11095-013-1142-0 | es_ES |
dc.description.references | Costa, P. M., & Fadeel, B. (2016). Emerging systems biology approaches in nanotoxicology: Towards a mechanism-based understanding of nanomaterial hazard and risk. Toxicology and Applied Pharmacology, 299, 101-111. doi:10.1016/j.taap.2015.12.014 | es_ES |
dc.description.references | Lv, M., Huang, W., Chen, Z., Jiang, H., Chen, J., Tian, Y., … Xu, F. (2015). Metabolomics techniques for nanotoxicity investigations. Bioanalysis, 7(12), 1527-1544. doi:10.4155/bio.15.83 | es_ES |
dc.description.references | Nagana Gowda, G. A., Barding, G. A., Dai, J., Gu, H., Margineantu, D. H., Hockenbery, D. M., & Raftery, D. (2018). A Metabolomics Study of BPTES Altered Metabolism in Human Breast Cancer Cell Lines. Frontiers in Molecular Biosciences, 5. doi:10.3389/fmolb.2018.00049 | es_ES |
dc.description.references | Ali, M. R. K., Wu, Y., Han, T., Zang, X., Xiao, H., Tang, Y., … El-Sayed, M. A. (2016). Simultaneous Time-Dependent Surface-Enhanced Raman Spectroscopy, Metabolomics, and Proteomics Reveal Cancer Cell Death Mechanisms Associated with Gold Nanorod Photothermal Therapy. Journal of the American Chemical Society, 138(47), 15434-15442. doi:10.1021/jacs.6b08787 | es_ES |
dc.description.references | Esumi, K., Takei, N., & Yoshimura, T. (2003). Antioxidant-potentiality of gold–chitosan nanocomposites. Colloids and Surfaces B: Biointerfaces, 32(2), 117-123. doi:10.1016/s0927-7765(03)00151-6 | es_ES |
dc.description.references | Du, S., Kendall, K., Toloueinia, P., Mehrabadi, Y., Gupta, G., & Newton, J. (2012). Aggregation and adhesion of gold nanoparticles in phosphate buffered saline. Journal of Nanoparticle Research, 14(3). doi:10.1007/s11051-012-0758-z | es_ES |
dc.description.references | Ulrich, E. L., Akutsu, H., Doreleijers, J. F., Harano, Y., Ioannidis, Y. E., Lin, J., … Markley, J. L. (2007). BioMagResBank. Nucleic Acids Research, 36(Database), D402-D408. doi:10.1093/nar/gkm957 | es_ES |
dc.description.references | Wishart, D. S., Feunang, Y. D., Marcu, A., Guo, A. C., Liang, K., Vázquez-Fresno, R., … Scalbert, A. (2017). HMDB 4.0: the human metabolome database for 2018. Nucleic Acids Research, 46(D1), D608-D617. doi:10.1093/nar/gkx1089 | es_ES |
dc.description.references | Mosmann, T. (1983). Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. Journal of Immunological Methods, 65(1-2), 55-63. doi:10.1016/0022-1759(83)90303-4 | es_ES |
dc.description.references | Yang, L., Shang, L., & Nienhaus, G. U. (2013). Mechanistic aspects of fluorescent gold nanocluster internalization by live HeLa cells. Nanoscale, 5(4), 1537. doi:10.1039/c2nr33147k | es_ES |
dc.description.references | Zhitomirsky, B., Farber, H., & Assaraf, Y. G. (2018). LysoTracker and MitoTracker Red are transport substrates of P‐glycoprotein: implications for anticancer drug design evading multidrug resistance. Journal of Cellular and Molecular Medicine, 22(4), 2131-2141. doi:10.1111/jcmm.13485 | es_ES |
dc.description.references | Chong, J., Soufan, O., Li, C., Caraus, I., Li, S., Bourque, G., … Xia, J. (2018). MetaboAnalyst 4.0: towards more transparent and integrative metabolomics analysis. Nucleic Acids Research, 46(W1), W486-W494. doi:10.1093/nar/gky310 | es_ES |
dc.description.references | Stepanenko, A. A., & Dmitrenko, V. V. (2015). Pitfalls of the MTT assay: Direct and off-target effects of inhibitors can result in over/underestimation of cell viability. Gene, 574(2), 193-203. doi:10.1016/j.gene.2015.08.009 | es_ES |
dc.description.references | Choi, S. Y., Jang, S. H., Park, J., Jeong, S., Park, J. H., Ock, K. S., … Lee, S. Y. (2012). Cellular uptake and cytotoxicity of positively charged chitosan gold nanoparticles in human lung adenocarcinoma cells. Journal of Nanoparticle Research, 14(12). doi:10.1007/s11051-012-1234-5 | es_ES |
dc.description.references | De Carvalho, T. G., Garcia, V. B., de Araújo, A. A., da Silva Gasparotto, L. H., Silva, H., Guerra, G. C. B., … de Araújo Júnior, R. F. (2018). Spherical neutral gold nanoparticles improve anti-inflammatory response, oxidative stress and fibrosis in alcohol-methamphetamine-induced liver injury in rats. International Journal of Pharmaceutics, 548(1), 1-14. doi:10.1016/j.ijpharm.2018.06.008 | es_ES |
dc.description.references | Carrola, J., Bastos, V., Ferreira de Oliveira, J. M. P., Oliveira, H., Santos, C., Gil, A. M., & Duarte, I. F. (2016). Insights into the impact of silver nanoparticles on human keratinocytes metabolism through NMR metabolomics. Archives of Biochemistry and Biophysics, 589, 53-61. doi:10.1016/j.abb.2015.08.022 | es_ES |
dc.description.references | Fröhlich, E. (2012). The role of surface charge in cellular uptake and cytotoxicity of medical nanoparticles. International Journal of Nanomedicine, 5577. doi:10.2147/ijn.s36111 | es_ES |
dc.description.references | Gürer, H., Özgünes, H., Saygin, E., & Ercal, N. (2001). Antioxidant Effect of Taurine Against Lead-Induced Oxidative Stress. Archives of Environmental Contamination and Toxicology, 41(4), 397-402. doi:10.1007/s002440010265 | es_ES |
dc.description.references | Lee, S.-H., Wang, T.-Y., Hong, J.-H., Cheng, T.-J., & Lin, C.-Y. (2016). NMR-based metabolomics to determine acute inhalation effects of nano- and fine-sized ZnO particles in the rat lung. Nanotoxicology, 10(7), 924-934. doi:10.3109/17435390.2016.1144825 | es_ES |
dc.description.references | Saborano, R., Wongpinyochit, T., Totten, J. D., Johnston, B. F., Seib, F. P., & Duarte, I. F. (2017). Metabolic Reprogramming of Macrophages Exposed to Silk, Poly(lactic-co-glycolic acid), and Silica Nanoparticles. Advanced Healthcare Materials, 6(14), 1601240. doi:10.1002/adhm.201601240 | es_ES |
dc.description.references | Bo, Y., Jin, C., Liu, Y., Yu, W., & Kang, H. (2014). Metabolomic analysis on the toxicological effects of TiO2nanoparticles in mouse fibroblast cells: from the perspective of perturbations in amino acid metabolism. Toxicology Mechanisms and Methods, 24(7), 461-469. doi:10.3109/15376516.2014.939321 | es_ES |
dc.description.references | Shea, T. B., Ekinci, F. J., Ortiz, D., Dawn-Linsley, M., Wilson, T. O., & Nicolosi, R. J. (2002). Efficacy of vitamin E, phosphatidyl choline, and pyruvate on buffering neuronal degeneration and oxidative stress in cultured cortical neurons and in central nervous tissue of apolipoprotein E-deficient mice. Free Radical Biology and Medicine, 33(2), 276-282. doi:10.1016/s0891-5849(02)00872-9 | es_ES |
dc.description.references | Schätzlein, M. P., Becker, J., Schulze-Sünninghausen, D., Pineda-Lucena, A., Herance, J. R., & Luy, B. (2018). Rapid two-dimensional ALSOFAST-HSQC experiment for metabolomics and fluxomics studies: application to a 13C-enriched cancer cell model treated with gold nanoparticles. Analytical and Bioanalytical Chemistry, 410(11), 2793-2804. doi:10.1007/s00216-018-0961-6 | es_ES |
dc.description.references | HUNTER, A. (2006). Molecular hurdles in polyfectin design and mechanistic background to polycation induced cytotoxicity☆. Advanced Drug Delivery Reviews, 58(14), 1523-1531. doi:10.1016/j.addr.2006.09.008 | es_ES |
dc.description.references | Ratnasekhar, C., Sonane, M., Satish, A., & Mudiam, M. K. R. (2015). Metabolomics reveals the perturbations in the metabolome ofCaenorhabditis elegansexposed to titanium dioxide nanoparticles. Nanotoxicology, 9(8), 994-1004. doi:10.3109/17435390.2014.993345 | es_ES |