- -

Sub-nanometre metal clusters for catalytic carbon-carbon and carbon-heteroatom cross-coupling reactions

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Sub-nanometre metal clusters for catalytic carbon-carbon and carbon-heteroatom cross-coupling reactions

Mostrar el registro completo del ítem

Leyva Perez, A. (2017). Sub-nanometre metal clusters for catalytic carbon-carbon and carbon-heteroatom cross-coupling reactions. Dalton Transactions. 46(46):15987-15990. https://doi.org/10.1039/c7dt03203j

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/154122

Ficheros en el ítem

Metadatos del ítem

Título: Sub-nanometre metal clusters for catalytic carbon-carbon and carbon-heteroatom cross-coupling reactions
Autor: Leyva Perez, Antonio
Entidad UPV: Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química
Fecha difusión:
Resumen:
[EN] Catalytic cross-coupling reactions are fundamental transformations in modern organic synthesis. Traditionally based on single-atom transition metal complex catalysts, the use of sub-nanometre metal clusters with ...[+]
Derechos de uso: Reserva de todos los derechos
Fuente:
Dalton Transactions. (issn: 1477-9226 )
DOI: 10.1039/c7dt03203j
Editorial:
The Royal Society of Chemistry
Versión del editor: https://doi.org/10.1039/c7dt03203j
Código del Proyecto:
info:eu-repo/grantAgreement/MINECO//CTQ2014-55178-R/ES/HIERRO Y BISMUTO SUB-NANOMETRICO Y CATALITICO/
Agradecimientos:
Financial support by the "Severo Ochoa" program, the RETOS program (CTQ2014-55178-R) and the Ramon y Cajal Program by MINECO (Spain), and also by "Convocatoria 2014 de Ayudas Fundacion BBVA a Investigadores y Creadores ...[+]
Tipo: Artículo

References

Phan, N. T. S., Van Der Sluys, M., & Jones, C. W. (2006). On the Nature of the Active Species in Palladium Catalyzed Mizoroki–Heck and Suzuki–Miyaura Couplings – Homogeneous or Heterogeneous Catalysis, A Critical Review. Advanced Synthesis & Catalysis, 348(6), 609-679. doi:10.1002/adsc.200505473

Martin, R., & Buchwald, S. L. (2008). Palladium-Catalyzed Suzuki−Miyaura Cross-Coupling Reactions Employing Dialkylbiaryl Phosphine Ligands. Accounts of Chemical Research, 41(11), 1461-1473. doi:10.1021/ar800036s

Wu, X.-F., Anbarasan, P., Neumann, H., & Beller, M. (2010). From Noble Metal to Nobel Prize: Palladium-Catalyzed Coupling Reactions as Key Methods in Organic Synthesis. Angewandte Chemie International Edition, 49(48), 9047-9050. doi:10.1002/anie.201006374 [+]
Phan, N. T. S., Van Der Sluys, M., & Jones, C. W. (2006). On the Nature of the Active Species in Palladium Catalyzed Mizoroki–Heck and Suzuki–Miyaura Couplings – Homogeneous or Heterogeneous Catalysis, A Critical Review. Advanced Synthesis & Catalysis, 348(6), 609-679. doi:10.1002/adsc.200505473

Martin, R., & Buchwald, S. L. (2008). Palladium-Catalyzed Suzuki−Miyaura Cross-Coupling Reactions Employing Dialkylbiaryl Phosphine Ligands. Accounts of Chemical Research, 41(11), 1461-1473. doi:10.1021/ar800036s

Wu, X.-F., Anbarasan, P., Neumann, H., & Beller, M. (2010). From Noble Metal to Nobel Prize: Palladium-Catalyzed Coupling Reactions as Key Methods in Organic Synthesis. Angewandte Chemie International Edition, 49(48), 9047-9050. doi:10.1002/anie.201006374

Li, G., & Jin, R. (2013). Catalysis by gold nanoparticles: carbon-carbon coupling reactions. Nanotechnology Reviews, 2(5), 529-545. doi:10.1515/ntrev-2013-0020

Corma, A., Juárez, R., Boronat, M., Sánchez, F., Iglesias, M., & García, H. (2011). Gold catalyzes the Sonogashira coupling reaction without the requirement of palladium impurities. Chem. Commun., 47(5), 1446-1448. doi:10.1039/c0cc04564k

Oliver-Meseguer, J., Dominguez, I., Gavara, R., Leyva-Pérez, A., & Corma, A. (2017). Disassembling Metal Nanocrystallites into Sub-nanometric Clusters and Low-faceted Nanoparticles for Multisite Catalytic Reactions. ChemCatChem, 9(8), 1429-1435. doi:10.1002/cctc.201700037

Leyva-Pérez, A., Oliver-Meseguer, J., Rubio-Marqués, P., & Corma, A. (2013). Water-Stabilized Three- and Four-Atom Palladium Clusters as Highly Active Catalytic Species in Ligand-Free CC Cross-Coupling Reactions. Angewandte Chemie International Edition, 52(44), 11554-11559. doi:10.1002/anie.201303188

Oliver-Messeguer, J., Liu, L., García-García, S., Canós-Giménez, C., Domínguez, I., Gavara, R., … Corma, A. (2015). Stabilized Naked Sub-nanometric Cu Clusters within a Polymeric Film Catalyze C–N, C–C, C–O, C–S, and C–P Bond-Forming Reactions. Journal of the American Chemical Society, 137(11), 3894-3900. doi:10.1021/jacs.5b00222

Surry, D. S., & Buchwald, S. L. (2011). Dialkylbiaryl phosphines in Pd-catalyzed amination: a user’s guide. Chem. Sci., 2(1), 27-50. doi:10.1039/c0sc00331j

Tkatchouk, E., Mankad, N. P., Benitez, D., Goddard, W. A., & Toste, F. D. (2011). Two Metals Are Better Than One in the Gold Catalyzed Oxidative Heteroarylation of Alkenes. Journal of the American Chemical Society, 133(36), 14293-14300. doi:10.1021/ja2012627

Wolf, W. J., Winston, M. S., & Toste, F. D. (2013). Exceptionally fast carbon–carbon bond reductive elimination from gold(III). Nature Chemistry, 6(2), 159-164. doi:10.1038/nchem.1822

Leyva-Pérez, A., Doménech-Carbó, A., & Corma, A. (2015). Unique distal size selectivity with a digold catalyst during alkyne homocoupling. Nature Communications, 6(1). doi:10.1038/ncomms7703

Boronat, M., Laursen, S., Leyva-Pérez, A., Oliver-Meseguer, J., Combita, D., & Corma, A. (2014). Partially oxidized gold nanoparticles: A catalytic base-free system for the aerobic homocoupling of alkynes. Journal of Catalysis, 315, 6-14. doi:10.1016/j.jcat.2014.04.003

Izawa, Y., & Stahl, S. S. (2010). Aerobic Oxidative Coupling of o-Xylene: Discovery of 2-Fluoropyridine as a Ligand to Support Selective Pd-Catalyzed CH Functionalization. Advanced Synthesis & Catalysis, 352(18), 3223-3229. doi:10.1002/adsc.201000771

Wang, D., Izawa, Y., & Stahl, S. S. (2014). Pd-Catalyzed Aerobic Oxidative Coupling of Arenes: Evidence for Transmetalation between Two Pd(II)-Aryl Intermediates. Journal of the American Chemical Society, 136(28), 9914-9917. doi:10.1021/ja505405u

Serna, P., & Corma, A. (2014). Towards a Zero-Waste Oxidative Coupling of Nonactivated Aromatics by Supported Gold Nanoparticles. ChemSusChem, 7(8), 2136-2139. doi:10.1002/cssc.201402061

Kashin, A. S., & Ananikov, V. P. (2013). Catalytic C–C and C–Heteroatom Bond Formation Reactions: In Situ Generated or Preformed Catalysts? Complicated Mechanistic Picture Behind Well-Known Experimental Procedures. The Journal of Organic Chemistry, 78(22), 11117-11125. doi:10.1021/jo402038p

Eremin, D. B., & Ananikov, V. P. (2017). Understanding active species in catalytic transformations: From molecular catalysis to nanoparticles, leaching, «Cocktails» of catalysts and dynamic systems. Coordination Chemistry Reviews, 346, 2-19. doi:10.1016/j.ccr.2016.12.021

Lu, Y., & Chen, W. (2012). Sub-nanometre sized metal clusters: from synthetic challenges to the unique property discoveries. Chemical Society Reviews, 41(9), 3594. doi:10.1039/c2cs15325d

Fortea-Pérez, F. R., Mon, M., Ferrando-Soria, J., Boronat, M., Leyva-Pérez, A., Corma, A., … Pardo, E. (2017). The MOF-driven synthesis of supported palladium clusters with catalytic activity for carbene-mediated chemistry. Nature Materials, 16(7), 760-766. doi:10.1038/nmat4910

Herzing, A. A., Kiely, C. J., Carley, A. F., Landon, P., & Hutchings, G. J. (2008). Identification of Active Gold Nanoclusters on Iron Oxide Supports for CO Oxidation. Science, 321(5894), 1331-1335. doi:10.1126/science.1159639

Huang, J., Akita, T., Faye, J., Fujitani, T., Takei, T., & Haruta, M. (2009). Propene Epoxidation with Dioxygen Catalyzed by Gold Clusters. Angewandte Chemie International Edition, 48(42), 7862-7866. doi:10.1002/anie.200903011

Liu, Y., Jia, C.-J., Yamasaki, J., Terasaki, O., & Schüth, F. (2010). Highly Active Iron Oxide Supported Gold Catalysts for CO Oxidation: How Small Must the Gold Nanoparticles Be? Angewandte Chemie International Edition, 49(33), 5771-5775. doi:10.1002/anie.201000452

Serna, P., & Gates, B. C. (2014). Molecular Metal Catalysts on Supports: Organometallic Chemistry Meets Surface Science. Accounts of Chemical Research, 47(8), 2612-2620. doi:10.1021/ar500170k

Corma, A., Concepción, P., Boronat, M., Sabater, M. J., Navas, J., Yacaman, M. J., … Mayoral, A. (2013). Exceptional oxidation activity with size-controlled supported gold clusters of low atomicity. Nature Chemistry, 5(9), 775-781. doi:10.1038/nchem.1721

Liu, L., Díaz, U., Arenal, R., Agostini, G., Concepción, P., & Corma, A. (2016). Generation of subnanometric platinum with high stability during transformation of a 2D zeolite into 3D. Nature Materials, 16(1), 132-138. doi:10.1038/nmat4757

Oliver-Meseguer, J., Dominguez, I., Gavara, R., Doménech-Carbó, A., González-Calbet, J. M., Leyva-Pérez, A., & Corma, A. (2017). The wet synthesis and quantification of ligand-free sub-nanometric Au clusters in solid matrices. Chemical Communications, 53(6), 1116-1119. doi:10.1039/c6cc09119a

Tyo, E. C., & Vajda, S. (2015). Catalysis by clusters with precise numbers of atoms. Nature Nanotechnology, 10(7), 577-588. doi:10.1038/nnano.2015.140

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem