- -

Cold seawater induces early maturational stages in the BPG axis of European eel males

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Cold seawater induces early maturational stages in the BPG axis of European eel males

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Rozenfeld, Christoffer es_ES
dc.contributor.author García-Carpintero-Burgos, Víctor es_ES
dc.contributor.author Pérez Igualada, Luz María es_ES
dc.contributor.author Gallego Albiach, Victor es_ES
dc.contributor.author Herranz-Jusdado, Juan Germán es_ES
dc.contributor.author Tveiten, Helge es_ES
dc.contributor.author Johnsen, Helge K. es_ES
dc.contributor.author Fontaine, Romain es_ES
dc.contributor.author Weltzien, F.A. es_ES
dc.contributor.author Cañizares Sales, Joaquín es_ES
dc.contributor.author Asturiano, Juan F. es_ES
dc.contributor.author Peñaranda, D.S. es_ES
dc.date.accessioned 2020-11-07T04:32:23Z
dc.date.available 2020-11-07T04:32:23Z
dc.date.issued 2019-07-22 es_ES
dc.identifier.issn 1471-2164 es_ES
dc.identifier.uri http://hdl.handle.net/10251/154383
dc.description.abstract [EN] BackgroundThe impossibility of closing the life cycle of the European eel (Anguilla anguilla) in captivity troubles the future of this critically endangered species. In addition, the European eel is a highly valued and demanded resource, thus the successful closing of its life cycle would have a substantial economic and ecological impact. With the aim of obtaining the highest gamete quality, the study of the effects of environmental factors, such as temperature, on reproductive performance may prove valuable. This is especially true for the exposure to cold water, which has been reported to improve sexual development in multiple other Actinopterygii species.ResultsEuropean eel males treated with cold seawater (10 degrees C, T10) for 2weeks showed an increase in the proliferation and differentiation of spermatogonial cells until the differentiated spermatogonial type A cell stage, and elevated testosterone and 11-ketotestosterone plasma levels. Transcriptomes from the tissues of the brain-pituitary-gonad (BPG) axis of T10 samples revealed a differential gene expression profile compared to the other experimental groups, with clustering in a principal component analysis and in heat maps of all differentially expressed genes. Furthermore, a functional analysis of differentially expressed genes revealed enriched gene ontology terms involved in the regulation of circadian rhythm, histone modification, meiotic nuclear division, and others.ConclusionsCold seawater treatment had a clear effect on the activity of the BPG-axis of European eel males. In particular, our cold seawater treatment induces the synchronization and increased proliferation and differentiation of specific spermatogonial cells. In the transcriptomic results, genes related to thermoception were observed. This thermoception may have caused the observed effects through epigenetic mechanisms, since all analysed tissues further revealed differentially expressed genes involved in histone modification. The presented results support our hypothesis that a low temperature seawater treatment induces an early sexual developmental stage in European eels. This hypothesis is logical given that the average temperature experienced by eels in the early stages of their oceanic reproductive migration is highly similar to that of this cold seawater treatment. Further studies are needed to test whether a cold seawater treatment can improve the response of European eels to artificial hormonal treatment, as the results suggest. es_ES
dc.description.sponsorship This work was subsidized by the Spanish Ministry of Science and Innovation (REPRO-TEMP project, AGL2013-41646-R), the Spanish Ministry of Innovation, Science and Universities (EELGONIA project, RTI2018-096413-B-I00), and by the European Union's Horizon 2020 research and innovation program under the Marie Sklodowska-Curie grant agreement No 642893 (IMPRESS), including the CR and JGHJ predoctoral contracts. JGHJ was granted a Short Term Scientific Mission by the COST Office (COST Action AQUAGAMETE: Assessing and improving the quality of aquatic animal gametes to enhance aquatic resources. The need to harmonize and standardize evolving methodologies, and improve transfer from academia to industry). The funding bodies had no role in the study, analysis, interpretation of data, or in writing the manuscript. es_ES
dc.language Inglés es_ES
dc.publisher Springer (Biomed Central Ltd.) es_ES
dc.relation.ispartof BMC Genomics es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Anguilla anguilla es_ES
dc.subject RNA-sequencing es_ES
dc.subject Epigenetics es_ES
dc.subject Temperature es_ES
dc.subject Spermatogonial proliferation es_ES
dc.subject Migration es_ES
dc.subject Immunofluorescence es_ES
dc.subject Radioimmunoassay es_ES
dc.subject Histology es_ES
dc.subject.classification PRODUCCION ANIMAL es_ES
dc.subject.classification GENETICA es_ES
dc.title Cold seawater induces early maturational stages in the BPG axis of European eel males es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1186/s12864-019-5969-6 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/642893/EU/Improved production strategies for endangered freshwater species./ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//AGL2013-41646-R/ES/LA ANGUILA EUROPEA COMO MODELO PARA ESTUDIAR LA TEMPERATURA COMO MODULADOR DE LA MADURACION SEXUAL EN TELEOSTEOS. POTENCIAL APLICACION EN ACUICULTURA./ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/COST//FA1205/EU/Assessing and improving the quality of aquatic animal gametes to enhance aquatic resources - The need to harmonize and standardize evolving methodologies, and improve transfer from academia to industry/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-096413-B-I00/ES/DESARROLLO Y APLICACION DE LAS TECNICAS DE PRODUCCION SUBROGADA DE GAMETOS DE ANGUILA EUROPEA MEDIANTE XENOTRASPLANTE DE ESPERMATOGONIAS EN OTRAS ESPECIES DE PECES/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ciencia Animal - Departament de Ciència Animal es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto de Ciencia y Tecnología Animal - Institut de Ciència i Tecnologia Animal es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Biotecnología - Departament de Biotecnologia es_ES
dc.description.bibliographicCitation Rozenfeld, C.; García-Carpintero-Burgos, V.; Pérez Igualada, LM.; Gallego Albiach, V.; Herranz-Jusdado, JG.; Tveiten, H.; Johnsen, HK.... (2019). Cold seawater induces early maturational stages in the BPG axis of European eel males. BMC Genomics. 20:1-20. https://doi.org/10.1186/s12864-019-5969-6 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1186/s12864-019-5969-6 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 20 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 20 es_ES
dc.identifier.pmid 31331264 es_ES
dc.identifier.pmcid PMC6647157 es_ES
dc.relation.pasarela S\392202 es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder Ministerio de Economía y Empresa es_ES
dc.contributor.funder European Commission es_ES
dc.contributor.funder European Cooperation in Science and Technology es_ES
dc.description.references Jacoby D, Gollock M. Anguilla anguilla. The IUCN Red List of Threatened Species: IUCN; 2014. Version 2014.3. http://www.iucnredlist.org es_ES
dc.description.references Peñaranda DS, Gallego V, Rozenfeld C, Herranz-Jusdado JG, Pérez L, Gómez A, et al. Using specific recombinant gonadotropins to induce spermatogenesis and spermiation in the European eel (Anguilla anguilla). Theriogenology. 2018;107:6–20. es_ES
dc.description.references Pérez L, Asturiano JF, Tomás A, Zegrari S, Barrera R, Espinós FJ, et al. Induction of maturation and spermiation in the male European eel: assessment of sperm quality throughout treatment. J Fish Biol. 2000;57(6):1488–504. es_ES
dc.description.references Butts IAE, Sørensen SR, Politis SN, Pitcher TE, Tomkiewicz J. Standardization of fertilization protocols for the European eel, Anguilla anguilla. Aquaculture. 2014;426–427:9–13. es_ES
dc.description.references Mylonas CC, Duncan NJ, Asturiano JF. Hormonal manipulations for the enhancement of sperm production in cultured fish and evaluation of sperm quality. Aquaculture. 2017;472:21–44. es_ES
dc.description.references van Ginneken V, Antonissen E, Müller UK, Booms R, Eding E, Verreth J, et al. Eel migration to the Sargasso: remarkably high swimming efficiency and low energy costs. J Exp Biol. 2005;208:1329–35. es_ES
dc.description.references Aarestrup K, Økland F, Hansen MM, Righton D, Gargan P, Castonguay M, et al. Oceanic spawning migration of the European eel (Anguilla anguilla). Science. 2009;325:12–3. es_ES
dc.description.references Righton D, Westerberg H, Feunteun E, Okland F, Gargan P, Amilhat E, et al. Empirical observations of the spawning migration of European eels: the long and dangerous road to the Sargasso Sea. Sci Adv. 2016;2(10):e1501694. es_ES
dc.description.references Boëtius I, Boëtius J. Studies in the European Eel, Anguilla anguilla (L.). Experimental induction of the male sexual cycle, its relation to temperature and other factors. Medd Dan Fish. 1967;ser.;(4):339–405. es_ES
dc.description.references Peñaranda DS, Pérez L, Gallego V, Jover M, Tveiten H, Baloche S, et al. Molecular and physiological study of the artificial maturation process in European eel males: from brain to testis. Gen Comp Endocrinol. 2010;166(1):160–71. es_ES
dc.description.references Asturiano JF, Marco-Jiménez F, Pérez L, Balasch S, Garzón DL, Peñaranda DS, et al. Effects of hCG as spermiation inducer on European eel semen quality. Theriogenology. 2006;66(4):1012–20. es_ES
dc.description.references Webb MAH, Van Eenennaam JP, Doroshov SI, Moberg GP, Van Eenennaam JP. Preliminary observations on the effects of holding temperature on reproductive performance of female white sturgeon, Acipenser transmontanus Richardson. Aquaculture. 1999;176(3–4):315–29. es_ES
dc.description.references Webb MAH, Van Eenennaam JP, Feist GW, Linares-Casenave J, Fitzpatrick MS, Schreck CB, et al. Effects of thermal regime on ovarian maturation and plasma sex steroids in farmed white sturgeon, Acipenser transmontanus. Aquaculture. 2001;201(1–2):137–51. es_ES
dc.description.references Clark RW, Henderson-Arzapalo A, Sullivan CV. Disparate effects of constant and annually-cycling daylength and water temperature on reproductive maturation of striped bass (Morone saxatilis). Aquaculture. 2005;249(1–4):497–513. es_ES
dc.description.references Hokanson KEF. Temperature requirements of some percids and adaptations to the seasonal temperature cycle. J Fish Res Board Canada. 1977;34(10):1524–50. es_ES
dc.description.references Wang N, Teletchea F, Kestemont P, Milla S, Fontaine P. Photothermal control of the reproductive cycle in temperate fishes. Rev Aquac. 2010;2(4):209–22. es_ES
dc.description.references Tveiten H, Johnsen HK. Temperature experienced during vitellogenesis influences ovarian maturation and the timing of ovulation in common wolffish. J Fish Biol. 1999;55(4):809–19. es_ES
dc.description.references Davie A, Porter MJ, Bromage NR, Migaud H. The role of seasonally altering photoperiod in regulating physiology in Atlantic cod (Gadus morhua). Part II. Somatic growth. Can J Fish Aquat Sci. 2007;64(1):98–112. es_ES
dc.description.references Hansen T, Karlsen Ø, Taranger GL, Hemre GI, Holm JC, Kjesbu OS. Growth, gonadal development and spawning time of Atlantic cod (Gadus morhua) reared under different photoperiods. Aquaculture. 2001;203(1–2):51–67. es_ES
dc.description.references Suquet M, Normant Y, Gaignon JL, Quéméner L, Fauvel C. Effect of water temperature on individual reproductive activity of pollack (Pollachius pollachius). Aquaculture. 2005;243(1–4):113–20. es_ES
dc.description.references Prat F, Zanuy S, Bromage N, Carrillo M. Effects of constant short and long photoperiod regimes on the spawning performance and sex steroid levels of female and male sea bass. J Fish Biol. 1999;54(1):125–37. es_ES
dc.description.references Mañanós EL, Zanuy S, Carrillo M, Mananos EL, Zanuy S, Carrillo M. Photoperiodic manipulations of the reproductive cycle of sea bass (Dicentrarchus labrax) and their effects on gonadal development, and plasma 17 beta-estradiol and vitellogenin levels. Fish Physiol Biochem. 1997;16(64):211–22. es_ES
dc.description.references Migaud H, Fontaine P, Sulistyo I, Kestemont P, Gardeur JN. Induction of out-of-season spawning in Eurasian perch Perca fluviatilis: effects of rates of cooling and cooling durations on female gametogenesis and spawning. Aquaculture. 2002;205(3–4):253–67. es_ES
dc.description.references Baeza R, Mazzeo I, Vílchez MC, Gallego V, Peñaranda DS, Pérez L, et al. Effect of thermal regime on fatty acid dynamics in male European eels (Anguilla anguilla) during hormonally-induced spermatogenesis. Aquaculture. 2014;430:86–97. es_ES
dc.description.references Pérez L, Peñaranda DS, Dufour S, Baloche S, Palstra AP, Van Den Thillart GEEJM, et al. Influence of temperature regime on endocrine parameters and vitellogenesis during experimental maturation of European eel (Anguilla anguilla) females. Gen Comp Endocrinol. 2011;174(1):51–9. es_ES
dc.description.references Peñaranda DS, Morini M, Tveiten H, Vílchez MC, Gallego V, Dirks RP, et al. Temperature modulates testis steroidogenesis in European eel. Comp Biochem Physiol A Mol Integr Physiol. 2016;197:58–67. es_ES
dc.description.references Mazzeo I, Peñaranda DS, Gallego V, Baloche S, Nourizadeh-Lillabadi R, Tveiten H, et al. Temperature modulates the progression of vitellogenesis in the European eel. Aquaculture. 2014;434:38–47. es_ES
dc.description.references Ahn H, Yamada Y, Okamura A, Horie N, Mikawa N, Tanaka S, et al. Effect of water temperature on embryonic development and hatching time of the Japanese eel Anguilla japonica. Aquaculture. 2012;330–333:100–5. es_ES
dc.description.references Gallego V, Mazzeo I, Vílchez MC, Peñaranda DS, Carneiro PCF, Pérez L, et al. Study of the effects of thermal regime and alternative hormonal treatments on the reproductive performance of European eel males (Anguilla anguilla) during induced sexual maturation. Aquaculture. 2012;354–355:7–16. es_ES
dc.description.references Li H, Durbin R. Fast and accurate long-read alignment with burrows-wheeler transform. Bioinformatics. 2010;26(5):589–95. es_ES
dc.description.references Schulz RW, Renato L, França D, Lareyre J, Legac F, Chiarini-garcia H, et al. Spermatogenesis in fish. Gen Comp Endocrinol. 2010;165(3):390–411. es_ES
dc.description.references Miura T, Miura CI. Molecular control mechanisms of fish spermatogenesis. Fish Physiol Biochem. 2003;28:181–6. es_ES
dc.description.references Morini M, Peñaranda DS, Vílchez MC, Nourizadeh-Lillabadi R, Lafont AG, Dufour S, et al. The expression of nuclear and membrane estrogen receptors in the European eel throughout spermatogenesis. Comp Biochem Physiol -Part A Mol Integr Physiol. 2017;207:79–92. es_ES
dc.description.references Baeza R, Peñaranda DS, Vílchez MC, Tveiten H, Pérez L, Asturiano JF. Exploring correlations between sex steroids and fatty acids and their potential roles in the induced maturation of the male European eel. Aquaculture. 2015;435:328–35. es_ES
dc.description.references Pankhurst NW. Relation of visual changes to the onset of sexual-maturation in the European eel Anguilla anguilla (L). J Fish Biol. 1982;21(2):127–40. es_ES
dc.description.references Durif CMF, Dufour S, Elie P. Impact of silvering stage, age, body size and condition on reproductive potential of the European eel. Mar Ecol Prog Ser. 2006;327:171–81. es_ES
dc.description.references Schmitz M, Aroua S, Vidal B, Le Belle N, Elie P, Dufour S. Differential regulation of luteinizing hormone and follicle-stimulating hormone expression during ovarian development and under sexual steroid feedback in the European eel. Neuroendocrinology. 2005;81(2):107–19. es_ES
dc.description.references Kazeto Y, Kohara M, Miura T, Miura C, Yamaguchi S, Trant JM, et al. Japanese eel follicle-stimulating hormone (Fsh) and luteinizing hormone (Lh): production of biologically active recombinant Fsh and Lh by Drosophila S2 cells and their differential actions on the reproductive biology. Biol Reprod. 2008;79(5):938–46. es_ES
dc.description.references Ohta T, Miyake H, Miura C, Kamei H, Aida K, Miura T. Follicle-stimulating hormone induces spermatogenesis mediated by androgen production in Japanese eel, Anguilla japonica. Biol Reprod. 2007;77(6):970–7. es_ES
dc.description.references Miura T, Yamauchi K, Takahashi H, Nagahama Y. Hormonal induction of all stages of spermatogenesis in vitro in the male Japanese eel (Anguilla japonica). Physiology/Pharmacology. 1991;88:5774–8. es_ES
dc.description.references Lokman PM, Damsteegt EL, Wallace J, Downes M, Goodwin SL, Facoory LJ, et al. Dose-responses of male silver eels, Anguilla australis, to human chorionic gonadotropin and 11-ketotestosterone in vivo. Aquaculture. 2016;463:97–105. es_ES
dc.description.references Levavi-Sivan B, Bogerd J, Mañanós EL, Gómez A, Lareyre JJ. Perspectives on fish gonadotropins and their receptors. Gen Comp Endocrinol. 2010;165(3):412–37. es_ES
dc.description.references García-López Á, Bogerd J, Granneman JCM, Van Dijk W, Trant JM, Taranger GL, et al. Leydig cells express follicle-stimulating hormone receptors in African catfish. Endocrinology. 2009;150(1):357–65. es_ES
dc.description.references Planas JV, Swanson P. Maturation-associated changes in the response of the salmon testis to the steroidogenic actions of gonadotropins (GTH I and GTH II) in vitro. Biol Reprod. 1995;52(3):697–704. es_ES
dc.description.references Huang YS, Schmitz M, Le Belle N, Chang CF, Quérat B, Dufour S. Androgens stimulate gonadotropin-II β-subunit in eel pituitary cells in vitro. Mol Cell Endocrinol. 1997;131(2):157–66. es_ES
dc.description.references Anders S, Huber W. Differential expression analysis for sequence count data. Genome Biol. 2010;11(R106):1–12. es_ES
dc.description.references Vidal B, Pasqualini C, Le Belle N, Holland MCH, Sbaihi M, Vernier P, et al. Dopamine inhibits luteinizing hormone synthesis and release in the juvenile European eel: a neuroendocrine lock for the onset of puberty. Biol Reprod. 2004;71(5):1491–500. es_ES
dc.description.references Komal P, Nashmi R. T-cell receptors modify neuronal function in the central nervous system. Biochem Pharmacol. 2015;97(4):512–7. es_ES
dc.description.references Boulanger LM. Immune proteins in brain development and synaptic plasticity. Neuron. 2009;64(1):93–109. es_ES
dc.description.references Huising MO, Stet RJM, Savelkoul HFJ, Verburg-Van Kemenade BML. The molecular evolution of the interleukin-1 family of cytokines; IL-18 in teleost fish. Dev Comp Immunol. 2004;28(5):395–413. es_ES
dc.description.references Corriveau RA, Huh GS, Shatz CJ. Regulation of class I MHC gene expression in the developing and mature CNS by neural activity. Neuron. 1998;21(3):505–20. es_ES
dc.description.references Shatz CJ. MHC Class I: An unexpected role in neuronal plasticity. Neuron. 2009;64(1):40–5. es_ES
dc.description.references Needleman LA, Liu XB, El-Sabeawy F, Jones EG, McAllister AK. MHC class I molecules are present both pre- and postsynaptically in the visual cortex during postnatal development and in adulthood. Proc Natl Acad Sci. 2010;107(39):16999–7004. es_ES
dc.description.references Syken J, Shatz CJ. Expression of T cell receptor beta locus in central nervous system neurons. Proc Natl Acad Sci U S A. 2003;100(22):13048–53. es_ES
dc.description.references Komal P, Gudavicius G, Nelson CJ, Nashmi R. T-cell receptor activation decreases excitability of cortical interneurons by inhibiting 7 nicotinic receptors. J Neurosci. 2014;34(1):22–35. es_ES
dc.description.references Lee H, Brott BK, Kirkby LA, Adelson JD, Cheng S, Feller MB, et al. Synapse elimination and learning rules co-regulated by MHC class I H2-Db. Nature. 2014;509(7499):195–200. es_ES
dc.description.references Pankhurst NW, Lythgoe JN. Changes in vision and olfaction during sexual maturation in the European eel Anguilla anguilla (L.). J Fish Biol. 1983;23(2):229–40. es_ES
dc.description.references Churcher AM, Pujolar J, Milan M, Hubbard PC, Martins RS, Saraiva JL, et al. Changes in the gene expression profiles of the brains of male European eels (Anguilla anguilla) during sexual maturation. BMC Genomics. 2014;15(1):799. es_ES
dc.description.references Jenuwein T, Allis CD. Translating the histone code. Science. 2001;293:1074–80. es_ES
dc.description.references Strahl BD, Allis CD. The language of covalent histone modifications. Nature. 2000;403(6765):41–5. es_ES
dc.description.references Berr A, Shafiq S, Shen WH. Histone modifications in transcriptional activation during plant development. Biochim Biophys Acta - Gene Regul Mech. 2011;1809(10):567–76. es_ES
dc.description.references Tachibana M, Nozaki M, Takeda N, Shinkai Y. Functional dynamics of H3K9 methylation during meiotic prophase progression. EMBO J. 2007;26(14):3346–59. es_ES
dc.description.references López-Olmeda JF, Sánchez-Vázquez FJ. Zebrafish temperature selection and synchronization of locomotor activity circadian rhythm to ahemeral cycles of light and temperature. Chronobiol Int. 2009;26(2):200–18. es_ES
dc.description.references Lahiri K, Vallone D, Gondi SB, Santoriello C, Dickmeis T, Foulkes NS. Temperature regulates transcription in the zebrafish circadian clock. PLoS Biol. 2005;3(11):2005–16. es_ES
dc.description.references Rainey MA, George M, Ying G, Akakura R, Burgess DJ, Siefker E, et al. The endocytic recycling regulator EHD1 is essential for spermatogenesis and male fertility in mice. BMC Dev Biol. 2010;37(10):1–19. es_ES
dc.description.references Burgerhout E, Minegishi Y, Brittijn SA, de Wijze DL, Henkel CV, Jansen HJ, et al. Changes in ovarian gene expression profiles and plasma hormone levels in maturing European eel (Anguilla anguilla); biomarkers for broodstock selection. Gen Comp Endocrinol. 2016;225:185–96. es_ES
dc.description.references Schulz R. Measurement of five androgens in the blood of immature and maturing male rainbow trout, Salmo gairdneri (Richardson). Steroids. 1985;46(2–3):717–26. es_ES
dc.description.references Frantzen M, Arnesen AM, Damsgård B, Tveiten H, Johnsen HK. Effects of photoperiod on sex steroids and gonad maturation in Arctic charr. Aquaculture. 2004;240(1–4):561–74. es_ES
dc.description.references Johnsen H, Tveiten H, Torgersen JS, Andersen Ø. Divergent and sex-dimorphic expression of the paralogs of the Sox9-Amh-Cyp19a1 regulatory cascade in developing and adult Atlantic cod (Gadus morhua L.). Mol Reprod Dev. 2013;80(5):358–70. es_ES
dc.description.references Peña-Llopis S, Brugarolas J. Simultaneous isolation of high-quality DNA, RNA, miRNA and proteins from tissues for genomic applications. Nat Protoc. 2013 Nov;8(11):2240–55. es_ES
dc.description.references Andrews S. FastQC: A quality control tool for high throughput sequence data. 2010. http://www.bioinformatics.babraham.ac.uk/projects/ . es_ES
dc.description.references Li B, Dewey CN. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics. 2011;12(1):323. es_ES
dc.description.references Rozenfeld C, Blanca J, Albiach VG, García-Carpintero V, Herranz-Jusdado JG, Pérez L, et al. Large scale gene duplication affected the European eel (Anguilla anguilla) after the 3R teleost duplication. bioRxiv. 2017; preprint:232918. es_ES
dc.description.references Haas BJ, Papanicolaou A, Yassour M, Grabherr M, Blood PD, Bowden J, et al. De novo transcript sequence reconstruction from RNA-seq using the trinity platform for reference generation and analysis. Nat Protoc. 2013;8(8):1494–512. es_ES
dc.description.references Huerta-Cepas J, Szklarczyk D, Forslund K, Cook H, Heller D, Walter MC, et al. eggNOG 4.5: a hierarchical orthology framework with improved functional annotations for eukaryotic, prokaryotic and viral sequences. Nucleic Acids Res. 2016;44:286–93. es_ES
dc.description.references Alexa A, Rahnenfuhrer J. topGO: Enrichment analysis for gene ontology. 2016. R package version 2.29.0. es_ES
dc.description.references National Center for Biotechnology Information (NCBI) GenBank. Http:// www.ncbi.nlm.nih.gov/genbank . Access no SRP126643. Accessed 09-09-2018. es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem