- -

Multifaceted role of cycling DOF factor 3 (CDF3) in the regulation of flowering time and abiotic stress responses in Arabidopsis

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Multifaceted role of cycling DOF factor 3 (CDF3) in the regulation of flowering time and abiotic stress responses in Arabidopsis

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Corrales, Alba Rocío es_ES
dc.contributor.author Carrillo, Laura es_ES
dc.contributor.author Lasierra, Pilar es_ES
dc.contributor.author Nebauer, Sergio G. es_ES
dc.contributor.author Dominguez-Figueroa, Jose es_ES
dc.contributor.author Renau-Morata, Begoña es_ES
dc.contributor.author Pollmann, Stephan es_ES
dc.contributor.author GRANELL RICHART, ANTONIO es_ES
dc.contributor.author Molina, Rosa-Victoria es_ES
dc.contributor.author Vicente-Carbajosa, Jesús es_ES
dc.contributor.author Medina, Joaquín es_ES
dc.date.accessioned 2020-11-07T04:32:45Z
dc.date.available 2020-11-07T04:32:45Z
dc.date.issued 2017-05 es_ES
dc.identifier.issn 0140-7791 es_ES
dc.identifier.uri http://hdl.handle.net/10251/154392
dc.description.abstract [EN] DNA-binding with one finger (DOF)-type transcription factors are involved in many fundamental processes in higher plants, from responses to light and phytohormones to flowering time and seed maturation, but their relation with abiotic stress tolerance is largely unknown. Here, we identify the roles of CDF3, an Arabidopsis DOF gene in abiotic stress responses and developmental processes like flowering time. CDF3 is highly induced by drought, extreme temperatures and abscisic acid treatment. The CDF3 T-DNA insertion mutant cdf3-1 is much more sensitive to drought and low temperature stress, whereas CDF3 overexpression enhances the tolerance of transgenic plants to drought, cold and osmotic stress and promotes late flowering. Transcriptome analysis revealed that CDF3 regulates a set of genes involved in cellular osmoprotection and oxidative stress, including the stress tolerance transcription factors CBFs, DREB2A and ZAT12, which involve both gigantea-dependent and independent pathways. Consistently, metabolite profiling disclosed that the total amount of some protective metabolites including -aminobutyric acid, proline, glutamine and sucrose were higher in CDF3-overexpressing plants. Taken together, these results indicate that CDF3 plays a multifaceted role acting on both flowering time and abiotic stress tolerance, in part by controlling the CBF/DREB2A-CRT/DRE and ZAT10/12 modules. es_ES
dc.description.sponsorship We thank Dr Pablo Gonzalez-Melendi and Dr Jan Zouhar for technical handling of the confocal microscope and Dr Rafael Catala for the assistance with the low temperature stress assays. This work was supported by grants from Instituto Nacional de Investigacion y Tecnologia Agraria y Alimentaria (INIA; projects 2009-0004-C01, 2012-0008-C01), Spanish Ministry of Science and Innovation (projects BIO2010-1487, BFU2013-49665-EXP). A.R.C. and J.D.F. were supported by INIA pre-doctoral fellowships es_ES
dc.language Inglés es_ES
dc.publisher Blackwell Publishing es_ES
dc.relation.ispartof Plant Cell & Environment es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Arabidopsis es_ES
dc.subject CDF es_ES
dc.subject DOF es_ES
dc.subject Drought stress es_ES
dc.subject Flowering time es_ES
dc.subject Gene expression es_ES
dc.subject Low temperature stress es_ES
dc.subject Nitrogen es_ES
dc.subject.classification FISIOLOGIA VEGETAL es_ES
dc.title Multifaceted role of cycling DOF factor 3 (CDF3) in the regulation of flowering time and abiotic stress responses in Arabidopsis es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1111/pce.12894 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/INIA//2009-0004-C01/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/INIA//2012-0008-C01/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//BIO2010-14871/ES/REDES REGULADORAS EN EL ORIGEN Y METABOLISMO DE LA SEMILLA/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//BFU2013-49665-EXP/ES/AUMENTO EN LA CAPTURA DE ENERGÍA Y CARBONO EN SISTEMAS VEGETALES/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Producción Vegetal - Departament de Producció Vegetal es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes es_ES
dc.description.bibliographicCitation Corrales, AR.; Carrillo, L.; Lasierra, P.; Nebauer, SG.; Dominguez-Figueroa, J.; Renau-Morata, B.; Pollmann, S.... (2017). Multifaceted role of cycling DOF factor 3 (CDF3) in the regulation of flowering time and abiotic stress responses in Arabidopsis. Plant Cell & Environment. 40(5):748-764. https://doi.org/10.1111/pce.12894 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1111/pce.12894 es_ES
dc.description.upvformatpinicio 748 es_ES
dc.description.upvformatpfin 764 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 40 es_ES
dc.description.issue 5 es_ES
dc.identifier.pmid 28044345 es_ES
dc.relation.pasarela S\357625 es_ES
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.contributor.funder Instituto Nacional de Investigaciones Agrarias es_ES
dc.contributor.funder Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Achard, P., Gong, F., Cheminant, S., Alioua, M., Hedden, P., & Genschik, P. (2008). The Cold-Inducible CBF1 Factor–Dependent Signaling Pathway Modulates the Accumulation of the Growth-Repressing DELLA Proteins via Its Effect on Gibberellin Metabolism. The Plant Cell, 20(8), 2117-2129. doi:10.1105/tpc.108.058941 es_ES
dc.description.references Ahuja, I., de Vos, R. C. H., Bones, A. M., & Hall, R. D. (2010). Plant molecular stress responses face climate change. Trends in Plant Science, 15(12), 664-674. doi:10.1016/j.tplants.2010.08.002 es_ES
dc.description.references Alonso, R., Oñate-Sánchez, L., Weltmeier, F., Ehlert, A., Diaz, I., Dietrich, K., … Dröge-Laser, W. (2009). A Pivotal Role of the Basic Leucine Zipper Transcription Factor bZIP53 in the Regulation of Arabidopsis Seed Maturation Gene Expression Based on Heterodimerization and Protein Complex Formation. The Plant Cell, 21(6), 1747-1761. doi:10.1105/tpc.108.062968 es_ES
dc.description.references BEUVE, N., RISPAIL, N., LAINE, P., CLIQUET, J.-B., OURRY, A., & LE DEUNFF, E. (2004). Putative role of gamma -aminobutyric acid (GABA) as a long-distance signal in up-regulation of nitrate uptake in Brassica napus L. Plant, Cell and Environment, 27(8), 1035-1046. doi:10.1111/j.1365-3040.2004.01208.x es_ES
dc.description.references Blümel, M., Dally, N., & Jung, C. (2015). Flowering time regulation in crops — what did we learn from Arabidopsis? Current Opinion in Biotechnology, 32, 121-129. doi:10.1016/j.copbio.2014.11.023 es_ES
dc.description.references Bouche, N., Fait, A., Bouchez, D., Moller, S. G., & Fromm, H. (2003). Mitochondrial succinic-semialdehyde dehydrogenase of the  -aminobutyrate shunt is required to restrict levels of reactive oxygen intermediates in plants. Proceedings of the National Academy of Sciences, 100(11), 6843-6848. doi:10.1073/pnas.1037532100 es_ES
dc.description.references Catala, R., Medina, J., & Salinas, J. (2011). Integration of low temperature and light signaling during cold acclimation response in Arabidopsis. Proceedings of the National Academy of Sciences, 108(39), 16475-16480. doi:10.1073/pnas.1107161108 es_ES
dc.description.references Chaves, M. M., Flexas, J., & Pinheiro, C. (2008). Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell. Annals of Botany, 103(4), 551-560. doi:10.1093/aob/mcn125 es_ES
dc.description.references Chen, H., Hwang, J. E., Lim, C. J., Kim, D. Y., Lee, S. Y., & Lim, C. O. (2010). Arabidopsis DREB2C functions as a transcriptional activator of HsfA3 during the heat stress response. Biochemical and Biophysical Research Communications, 401(2), 238-244. doi:10.1016/j.bbrc.2010.09.038 es_ES
dc.description.references Claussen, W. (2005). Proline as a measure of stress in tomato plants. Plant Science, 168(1), 241-248. doi:10.1016/j.plantsci.2004.07.039 es_ES
dc.description.references Clough, S. J., & Bent, A. F. (1998). Floral dip: a simplified method forAgrobacterium-mediated transformation ofArabidopsis thaliana. The Plant Journal, 16(6), 735-743. doi:10.1046/j.1365-313x.1998.00343.x es_ES
dc.description.references Corrales, A., Carrillo, L., Nebauer, S., Renau-Morata, B., Sánchez-Perales, M., Fernández-Nohales, P., … Medina, J. (2014). Salinity Assay in Arabidopsis. BIO-PROTOCOL, 4(16). doi:10.21769/bioprotoc.1216 es_ES
dc.description.references Corrales, A.-R., Nebauer, S. G., Carrillo, L., Fernández-Nohales, P., Marqués, J., Renau-Morata, B., … Medina, J. (2014). Characterization of tomato Cycling Dof Factors reveals conserved and new functions in the control of flowering time and abiotic stress responses. Journal of Experimental Botany, 65(4), 995-1012. doi:10.1093/jxb/ert451 es_ES
dc.description.references Davletova, S., Schlauch, K., Coutu, J., & Mittler, R. (2005). The Zinc-Finger Protein Zat12 Plays a Central Role in Reactive Oxygen and Abiotic Stress Signaling in Arabidopsis. Plant Physiology, 139(2), 847-856. doi:10.1104/pp.105.068254 es_ES
dc.description.references DÉJARDIN, A., SOKOLOV, L. N., & KLECZKOWSKI, L. A. (1999). Sugar/osmoticum levels modulate differential abscisic acid-independent expression of two stress-responsive sucrose synthase genes in Arabidopsis. Biochemical Journal, 344(2), 503-509. doi:10.1042/bj3440503 es_ES
dc.description.references Dubois, M., Skirycz, A., Claeys, H., Maleux, K., Dhondt, S., De Bodt, S., … Inzé, D. (2013). ETHYLENE RESPONSE FACTOR6 Acts as a Central Regulator of Leaf Growth under Water-Limiting Conditions in Arabidopsis. Plant Physiology, 162(1), 319-332. doi:10.1104/pp.113.216341 es_ES
dc.description.references Farrant, J. M., & Moore, J. P. (2011). Programming desiccation-tolerance: from plants to seeds to resurrection plants. Current Opinion in Plant Biology, 14(3), 340-345. doi:10.1016/j.pbi.2011.03.018 es_ES
dc.description.references Fornara, F., Montaigu, A., Sánchez‐Villarreal, A., Takahashi, Y., Ver Loren van Themaat, E., Huettel, B., … Coupland, G. (2015). The GI – CDF module of Arabidopsis affects freezing tolerance and growth as well as flowering. The Plant Journal, 81(5), 695-706. doi:10.1111/tpj.12759 es_ES
dc.description.references Fornara, F., Panigrahi, K. C. S., Gissot, L., Sauerbrunn, N., Rühl, M., Jarillo, J. A., & Coupland, G. (2009). Arabidopsis DOF Transcription Factors Act Redundantly to Reduce CONSTANS Expression and Are Essential for a Photoperiodic Flowering Response. Developmental Cell, 17(1), 75-86. doi:10.1016/j.devcel.2009.06.015 es_ES
dc.description.references Fowler, S. (1999). GIGANTEA: a circadian clock-controlled gene that regulates photoperiodic flowering in Arabidopsis and encodes a protein with several possible membrane-spanning domains. The EMBO Journal, 18(17), 4679-4688. doi:10.1093/emboj/18.17.4679 es_ES
dc.description.references Galmés, J., Medrano, H., & Flexas, J. (2007). Photosynthetic limitations in response to water stress and recovery in Mediterranean plants with different growth forms. New Phytologist, 175(1), 81-93. doi:10.1111/j.1469-8137.2007.02087.x es_ES
dc.description.references Gill, S. S., & Tuteja, N. (2010). Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiology and Biochemistry, 48(12), 909-930. doi:10.1016/j.plaphy.2010.08.016 es_ES
dc.description.references Gilmour, S. J., Fowler, S. G., & Thomashow, M. F. (2004). Arabidopsis Transcriptional Activators CBF1, CBF2, and CBF3 have Matching Functional Activities. Plant Molecular Biology, 54(5), 767-781. doi:10.1023/b:plan.0000040902.06881.d4 es_ES
dc.description.references Gong, P., Zhang, J., Li, H., Yang, C., Zhang, C., Zhang, X., … Ye, Z. (2010). Transcriptional profiles of drought-responsive genes in modulating transcription signal transduction, and biochemical pathways in tomato. Journal of Experimental Botany, 61(13), 3563-3575. doi:10.1093/jxb/erq167 es_ES
dc.description.references Gould, P. D., Locke, J. C. W., Larue, C., Southern, M. M., Davis, S. J., Hanano, S., … Hall, A. (2006). The Molecular Basis of Temperature Compensation in the Arabidopsis Circadian Clock. The Plant Cell, 18(5), 1177-1187. doi:10.1105/tpc.105.039990 es_ES
dc.description.references Han, Q., Kang, G., & Guo, T. (2013). Proteomic analysis of spring freeze-stress responsive proteins in leaves of bread wheat (Triticum aestivum L.). Plant Physiology and Biochemistry, 63, 236-244. doi:10.1016/j.plaphy.2012.12.002 es_ES
dc.description.references Hernando-Amado, S., González-Calle, V., Carbonero, P., & Barrero-Sicilia, C. (2012). The family of DOF transcription factors in Brachypodium distachyon: phylogenetic comparison with rice and barley DOFs and expression profiling. BMC Plant Biology, 12(1), 202. doi:10.1186/1471-2229-12-202 es_ES
dc.description.references Zou, H.-F., Zhang, Y.-Q., Wei, W., Chen, H.-W., Song, Q.-X., Liu, Y.-F., … Chen, S.-Y. (2012). The transcription factor AtDOF4.2 regulates shoot branching and seed coat formation in Arabidopsis. Biochemical Journal, 449(2), 373-388. doi:10.1042/bj20110060 es_ES
dc.description.references Hussain, S. S., Kayani, M. A., & Amjad, M. (2011). Transcription factors as tools to engineer enhanced drought stress tolerance in plants. Biotechnology Progress, 27(2), 297-306. doi:10.1002/btpr.514 es_ES
dc.description.references Imaizumi, T. (2005). FKF1 F-Box Protein Mediates Cyclic Degradation of a Repressor of CONSTANS in Arabidopsis. Science, 309(5732), 293-297. doi:10.1126/science.1110586 es_ES
dc.description.references Ingram, J., & Bartels, D. (1996). THE MOLECULAR BASIS OF DEHYDRATION TOLERANCE IN PLANTS. Annual Review of Plant Physiology and Plant Molecular Biology, 47(1), 377-403. doi:10.1146/annurev.arplant.47.1.377 es_ES
dc.description.references Jarillo, J. A., Del Olmo, I., Gómez-Zambrano, A., Lázaro, A., López-González, L., Miguel, E., … Piñeiro, M. (2008). Photoperiodic control of flowering time: a review. Spanish Journal of Agricultural Research, 6(S1), 221. doi:10.5424/sjar/200806s1-391 es_ES
dc.description.references Izaurralde, E. (1997). The asymmetric distribution of the constituents of the Ran system is essential for transport into and out of the nucleus. The EMBO Journal, 16(21), 6535-6547. doi:10.1093/emboj/16.21.6535 es_ES
dc.description.references Karimi, M., Depicker, A., & Hilson, P. (2007). Recombinational Cloning with Plant Gateway Vectors. Plant Physiology, 145(4), 1144-1154. doi:10.1104/pp.107.106989 es_ES
dc.description.references Kim, S. Y., & Nam, K. H. (2010). Physiological roles of ERD10 in abiotic stresses and seed germination of Arabidopsis. Plant Cell Reports, 29(2), 203-209. doi:10.1007/s00299-009-0813-0 es_ES
dc.description.references Kiyosue, T., Yamaguchi-Shinozaki, K., & Shinozaki, K. (1994). Cloning of cDNAs for genes that are early-responsive to dehydration stress (ERDs) inArabidopsis thaliana L.: identification of three ERDs as HSP cognate genes. Plant Molecular Biology, 25(5), 791-798. doi:10.1007/bf00028874 es_ES
dc.description.references Kurai, T., Wakayama, M., Abiko, T., Yanagisawa, S., Aoki, N., & Ohsugi, R. (2011). Introduction of the ZmDof1 gene into rice enhances carbon and nitrogen assimilation under low-nitrogen conditions. Plant Biotechnology Journal, 9(8), 826-837. doi:10.1111/j.1467-7652.2011.00592.x es_ES
dc.description.references Liu, Q., Kasuga, M., Sakuma, Y., Abe, H., Miura, S., Yamaguchi-Shinozaki, K., & Shinozaki, K. (1998). Two Transcription Factors, DREB1 and DREB2, with an EREBP/AP2 DNA Binding Domain Separate Two Cellular Signal Transduction Pathways in Drought- and Low-Temperature-Responsive Gene Expression, Respectively, in Arabidopsis. The Plant Cell, 10(8), 1391. doi:10.2307/3870648 es_ES
dc.description.references Matsui, A., Ishida, J., Morosawa, T., Mochizuki, Y., Kaminuma, E., Endo, T. A., … Seki, M. (2008). Arabidopsis Transcriptome Analysis under Drought, Cold, High-Salinity and ABA Treatment Conditions using a Tiling Array. Plant and Cell Physiology, 49(8), 1135-1149. doi:10.1093/pcp/pcn101 es_ES
dc.description.references Medina, J., Bargues, M., Terol, J., Pérez-Alonso, M., & Salinas, J. (1999). The Arabidopsis CBF Gene Family Is Composed of Three Genes Encoding AP2 Domain-Containing Proteins Whose Expression Is Regulated by Low Temperature but Not by Abscisic Acid or Dehydration. Plant Physiology, 119(2), 463-470. doi:10.1104/pp.119.2.463 es_ES
dc.description.references Messerli, G., Partovi Nia, V., Trevisan, M., Kolbe, A., Schauer, N., Geigenberger, P., … Zeeman, S. C. (2007). Rapid Classification of Phenotypic Mutants of Arabidopsis via Metabolite Fingerprinting. Plant Physiology, 143(4), 1484-1492. doi:10.1104/pp.106.090795 es_ES
dc.description.references Mittler, R. (2006). Abiotic stress, the field environment and stress combination. Trends in Plant Science, 11(1), 15-19. doi:10.1016/j.tplants.2005.11.002 es_ES
dc.description.references Mizoguchi, T., Wright, L., Fujiwara, S., Cremer, F., Lee, K., Onouchi, H., … Coupland, G. (2005). Distinct Roles of GIGANTEA in Promoting Flowering and Regulating Circadian Rhythms in Arabidopsis. The Plant Cell, 17(8), 2255-2270. doi:10.1105/tpc.105.033464 es_ES
dc.description.references Munns, R., & Tester, M. (2008). Mechanisms of Salinity Tolerance. Annual Review of Plant Biology, 59(1), 651-681. doi:10.1146/annurev.arplant.59.032607.092911 es_ES
dc.description.references Murashige, T., & Skoog, F. (1962). A Revised Medium for Rapid Growth and Bio Assays with Tobacco Tissue Cultures. Physiologia Plantarum, 15(3), 473-497. doi:10.1111/j.1399-3054.1962.tb08052.x es_ES
dc.description.references Nishiyama, R., Le, D. T., Watanabe, Y., Matsui, A., Tanaka, M., Seki, M., … Tran, L.-S. P. (2012). Transcriptome Analyses of a Salt-Tolerant Cytokinin-Deficient Mutant Reveal Differential Regulation of Salt Stress Response by Cytokinin Deficiency. PLoS ONE, 7(2), e32124. doi:10.1371/journal.pone.0032124 es_ES
dc.description.references Noguero, M., Atif, R. M., Ochatt, S., & Thompson, R. D. (2013). The role of the DNA-binding One Zinc Finger (DOF) transcription factor family in plants. Plant Science, 209, 32-45. doi:10.1016/j.plantsci.2013.03.016 es_ES
dc.description.references Novillo, F., Medina, J., & Salinas, J. (2007). Arabidopsis CBF1 and CBF3 have a different function than CBF2 in cold acclimation and define different gene classes in the CBF regulon. Proceedings of the National Academy of Sciences, 104(52), 21002-21007. doi:10.1073/pnas.0705639105 es_ES
dc.description.references OliverosJ.C.(2007)Venny an interactive tool for comparing lists with Venn's diagrams.http://bioinfogp.cnb.csic.es/tools/venny/index.html. es_ES
dc.description.references Oñate-Sánchez, L., & Vicente-Carbajosa, J. (2008). DNA-free RNA isolation protocols for Arabidopsis thaliana, including seeds and siliques. BMC Research Notes, 1(1), 93. doi:10.1186/1756-0500-1-93 es_ES
dc.description.references Osakabe, Y., Kajita, S., & Osakabe, K. (2011). Genetic engineering of woody plants: current and future targets in a stressful environment. Physiologia Plantarum, 142(2), 105-117. doi:10.1111/j.1399-3054.2011.01451.x es_ES
dc.description.references Park, D. H. (1999). Control of Circadian Rhythms and Photoperiodic Flowering by the Arabidopsis GIGANTEA Gene. Science, 285(5433), 1579-1582. doi:10.1126/science.285.5433.1579 es_ES
dc.description.references Rajasekaran, L. R., Aspinall, D., & Paleg, L. G. (2000). Physiological mechanism of tolerance of Lycopersicon spp. exposed to salt stress. Canadian Journal of Plant Science, 80(1), 151-159. doi:10.4141/p99-003 es_ES
dc.description.references Rizhsky, L., Liang, H., Shuman, J., Shulaev, V., Davletova, S., & Mittler, R. (2004). When Defense Pathways Collide. The Response of Arabidopsis to a Combination of Drought and Heat Stress. Plant Physiology, 134(4), 1683-1696. doi:10.1104/pp.103.033431 es_ES
dc.description.references Rosso, M. G., Li, Y., Strizhov, N., Reiss, B., Dekker, K., & Weisshaar, B. (2003). An Arabidopsis thaliana T-DNA mutagenized population (GABI-Kat) for flanking sequence tag-based reverse genetics. Plant Molecular Biology, 53(1/2), 247-259. doi:10.1023/b:plan.0000009297.37235.4a es_ES
dc.description.references Rueda-López, M., Crespillo, R., Cánovas, F. M., & Ávila, C. (2008). Differential regulation of two glutamine synthetase genes by a single Dof transcription factor. The Plant Journal, 56(1), 73-85. doi:10.1111/j.1365-313x.2008.03573.x es_ES
dc.description.references Sakuma, Y., Maruyama, K., Osakabe, Y., Qin, F., Seki, M., Shinozaki, K., & Yamaguchi-Shinozaki, K. (2006). Functional Analysis of an Arabidopsis Transcription Factor, DREB2A, Involved in Drought-Responsive Gene Expression. The Plant Cell, 18(5), 1292-1309. doi:10.1105/tpc.105.035881 es_ES
dc.description.references Sato, Y., & Yokoya, S. (2007). Enhanced tolerance to drought stress in transgenic rice plants overexpressing a small heat-shock protein, sHSP17.7. Plant Cell Reports, 27(2), 329-334. doi:10.1007/s00299-007-0470-0 es_ES
dc.description.references Sawa, M., Nusinow, D. A., Kay, S. A., & Imaizumi, T. (2007). FKF1 and GIGANTEA Complex Formation Is Required for Day-Length Measurement in Arabidopsis. Science, 318(5848), 261-265. doi:10.1126/science.1146994 es_ES
dc.description.references Scarpeci, T. E., Zanor, M. I., Mueller-Roeber, B., & Valle, E. M. (2013). Overexpression of AtWRKY30 enhances abiotic stress tolerance during early growth stages in Arabidopsis thaliana. Plant Molecular Biology, 83(3), 265-277. doi:10.1007/s11103-013-0090-8 es_ES
dc.description.references Seki, M., Kamei, A., Yamaguchi-Shinozaki, K., & Shinozaki, K. (2003). Molecular responses to drought, salinity and frost: common and different paths for plant protection. Current Opinion in Biotechnology, 14(2), 194-199. doi:10.1016/s0958-1669(03)00030-2 es_ES
dc.description.references Shelp, B. J., Mullen, R. T., & Waller, J. C. (2012). Compartmentation of GABA metabolism raises intriguing questions. Trends in Plant Science, 17(2), 57-59. doi:10.1016/j.tplants.2011.12.006 es_ES
dc.description.references Shi, H., & Chan, Z. (2014). The cysteine2/histidine2-type transcription factor ZINC FINGER OF ARABIDOPSIS THALIANA 6 -activated C-REPEAT-BINDING FACTOR pathway is essential for melatonin-mediated freezing stress resistance in Arabidopsis. Journal of Pineal Research, 57(2), 185-191. doi:10.1111/jpi.12155 es_ES
dc.description.references Shinozaki, K., & Yamaguchi-Shinozaki, K. (2006). Gene networks involved in drought stress response and tolerance. Journal of Experimental Botany, 58(2), 221-227. doi:10.1093/jxb/erl164 es_ES
dc.description.references Shinozaki, K., Yamaguchi-Shinozaki, K., & Seki, M. (2003). Regulatory network of gene expression in the drought and cold stress responses. Current Opinion in Plant Biology, 6(5), 410-417. doi:10.1016/s1369-5266(03)00092-x es_ES
dc.description.references Skirycz, A., & Inzé, D. (2010). More from less: plant growth under limited water. Current Opinion in Biotechnology, 21(2), 197-203. doi:10.1016/j.copbio.2010.03.002 es_ES
dc.description.references Snedden, W. A., Arazi, T., Fromm, H., & Shelp, B. J. (1995). Calcium/Calmodulin Activation of Soybean Glutamate Decarboxylase. Plant Physiology, 108(2), 543-549. doi:10.1104/pp.108.2.543 es_ES
dc.description.references STITT, M., & KRAPP, A. (1999). The interaction between elevated carbon dioxide and nitrogen nutrition: the physiological and molecular background. Plant, Cell and Environment, 22(6), 583-621. doi:10.1046/j.1365-3040.1999.00386.x es_ES
dc.description.references Studart-Guimarães, C., Fait, A., Nunes-Nesi, A., Carrari, F., Usadel, B., & Fernie, A. R. (2007). Reduced Expression of Succinyl-Coenzyme A Ligase Can Be Compensated for by Up-Regulation of the γ-Aminobutyrate Shunt in Illuminated Tomato Leaves. Plant Physiology, 145(3), 626-639. doi:10.1104/pp.107.103101 es_ES
dc.description.references Supek, F., Bošnjak, M., Škunca, N., & Šmuc, T. (2011). REVIGO Summarizes and Visualizes Long Lists of Gene Ontology Terms. PLoS ONE, 6(7), e21800. doi:10.1371/journal.pone.0021800 es_ES
dc.description.references Suzuki, M., Kao, C.-Y., Cocciolone, S., & McCarty, D. R. (2002). Maize VP1 complements Arabidopsisabi3 and confers a novel ABA/auxin interaction in roots. The Plant Journal, 28(4), 409-418. doi:10.1046/j.1365-313x.2001.01165.x es_ES
dc.description.references Taji, T., Ohsumi, C., Iuchi, S., Seki, M., Kasuga, M., Kobayashi, M., … Shinozaki, K. (2002). Important roles of drought- and cold-inducible genes for galactinol synthase in stress tolerance in Arabidopsis thaliana. The Plant Journal, 29(4), 417-426. doi:10.1046/j.0960-7412.2001.01227.x es_ES
dc.description.references Thomashow, M. F. (2010). Molecular Basis of Plant Cold Acclimation: Insights Gained from Studying the CBF Cold Response Pathway: Figure 1. Plant Physiology, 154(2), 571-577. doi:10.1104/pp.110.161794 es_ES
dc.description.references Toufighi, K., Brady, S. M., Austin, R., Ly, E., & Provart, N. J. (2005). The Botany Array Resource: e-Northerns, Expression Angling, and promoter analyses. The Plant Journal, 43(1), 153-163. doi:10.1111/j.1365-313x.2005.02437.x es_ES
dc.description.references Vogel, J. T., Zarka, D. G., Van Buskirk, H. A., Fowler, S. G., & Thomashow, M. F. (2004). Roles of the CBF2 and ZAT12 transcription factors in configuring the low temperature transcriptome of Arabidopsis. The Plant Journal, 41(2), 195-211. doi:10.1111/j.1365-313x.2004.02288.x es_ES
dc.description.references Wang, W., Vinocur, B., Shoseyov, O., & Altman, A. (2004). Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response. Trends in Plant Science, 9(5), 244-252. doi:10.1016/j.tplants.2004.03.006 es_ES
dc.description.references Yamaguchi-Shinozaki, K., & Shinozaki, K. (2006). TRANSCRIPTIONAL REGULATORY NETWORKS IN CELLULAR RESPONSES AND TOLERANCE TO DEHYDRATION AND COLD STRESSES. Annual Review of Plant Biology, 57(1), 781-803. doi:10.1146/annurev.arplant.57.032905.105444 es_ES
dc.description.references Yanagisawa, S. (2001). The Transcriptional Activation Domain of the Plant-Specific Dof1 Factor Functions in Plant, Animal, and Yeast Cells. Plant and Cell Physiology, 42(8), 813-822. doi:10.1093/pcp/pce105 es_ES
dc.description.references Yanagisawa, S. (2002). The Dof family of plant transcription factors. Trends in Plant Science, 7(12), 555-560. doi:10.1016/s1360-1385(02)02362-2 es_ES
dc.description.references Yanagisawa, S., Akiyama, A., Kisaka, H., Uchimiya, H., & Miwa, T. (2004). Metabolic engineering with Dof1 transcription factor in plants: Improved nitrogen assimilation and growth under low-nitrogen conditions. Proceedings of the National Academy of Sciences, 101(20), 7833-7838. doi:10.1073/pnas.0402267101 es_ES
dc.description.references Yanagisawa, S., & Schmidt, R. J. (1999). Diversity and similarity among recognition sequences of Dof transcription factors. The Plant Journal, 17(2), 209-214. doi:10.1046/j.1365-313x.1999.00363.x es_ES
dc.description.references Yanagisawa, S., & Sheen, J. (1998). Involvement of Maize Dof Zinc Finger Proteins in Tissue-Specific and Light-Regulated Gene Expression. The Plant Cell, 10(1), 75-89. doi:10.1105/tpc.10.1.75 es_ES
dc.description.references Yang, X., Srivastava, R., Howell, S. H., & Bassham, D. C. (2015). Activation of autophagy by unfolded proteins during endoplasmic reticulum stress. The Plant Journal, 85(1), 83-95. doi:10.1111/tpj.13091 es_ES
dc.description.references Yoo, S.-D., Cho, Y.-H., & Sheen, J. (2007). Arabidopsis mesophyll protoplasts: a versatile cell system for transient gene expression analysis. Nature Protocols, 2(7), 1565-1572. doi:10.1038/nprot.2007.199 es_ES
dc.description.references Zhu, J.-K. (2002). SALT ANDDROUGHTSTRESSSIGNALTRANSDUCTION INPLANTS. Annual Review of Plant Biology, 53(1), 247-273. doi:10.1146/annurev.arplant.53.091401.143329 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem