- -

Detection of correct and incorrect measurements in real-time continuous glucose monitoring systems applying a postprocessing support vector machine

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Detection of correct and incorrect measurements in real-time continuous glucose monitoring systems applying a postprocessing support vector machine

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Leal, Yenny es_ES
dc.contributor.author GONZALEZ-ABRIL, LUIS es_ES
dc.contributor.author Lorencio, Carol es_ES
dc.contributor.author Bondía Company, Jorge es_ES
dc.contributor.author Vehí, Josep es_ES
dc.date.accessioned 2020-11-07T04:33:01Z
dc.date.available 2020-11-07T04:33:01Z
dc.date.issued 2013-07 es_ES
dc.identifier.issn 0018-9294 es_ES
dc.identifier.uri http://hdl.handle.net/10251/154397
dc.description.abstract [EN] Support vector machines (SVMs) are an attractive option for detecting correct and incorrect measurements in real-time continuous glucose monitoring systems (RTCGMSs), because their learning mechanism can introduce a postprocessing strategy for imbalanced datasets. The proposed SVM considers the geometric mean to obtain a more balanced performance between sensitivity and specificity. To test this approach, 23 critically ill patients receiving insulin therapy were monitored over 72 h using an RTCGMS, and a dataset of 537 samples, classified according to International Standards Organization (ISO) criteria (372 correct and 165 incorrect measurements), was obtained. The results obtained were promising for patients with septic shock or with sepsis, for which the proposed system can be considered as reliable. However, this approach cannot be considered suitable for patients without sepsis. es_ES
dc.description.sponsorship This work was supported by the Spanish Ministry of Science and Innovation under Grant DPI-2010-20764-C02, and by the Autonomous Government of Catalonia under Grant 2009 SGR 523. In addition, this work was partially supported by the Spanish Ministry of Economy and Competitiveness through ARTEMISA (TIN2009-14378-C02-01), and by the Andalusia Regional Ministry of Economy, Innovation and Science through Simon (TIC-8052). Y. Leal was supported by BR Grants of the University of Girona. es_ES
dc.language Inglés es_ES
dc.publisher Institute of Electrical and Electronics Engineers es_ES
dc.relation.ispartof IEEE Transactions on Biomedical Engineering es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Balanced performance es_ES
dc.subject Continuous glucose monitoring es_ES
dc.subject Critically ill patients es_ES
dc.subject Fault detection es_ES
dc.subject Support vector machines (SVMs) es_ES
dc.subject.classification INGENIERIA DE SISTEMAS Y AUTOMATICA es_ES
dc.title Detection of correct and incorrect measurements in real-time continuous glucose monitoring systems applying a postprocessing support vector machine es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1109/TBME.2013.2244092 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//DPI2010-20764-C02-02/ES/NUEVAS ESTRATEGIAS DE CONTROL GLUCEMICO POSTPRANDIAL MEDIANTE TERAPIA CON BOMBA DE INSULINA EN DIABETES TIPO 1/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//DPI2010-20764-C02-01/ES/NUEVAS ESTRATEGIAS DE CONTROL GLUCEMICO POSTPRANDIAL MEDIANTE TERAPIA CON BOMBA DE INSULINA EN DIABETES TIPO 1/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//TIN2009-14378-C02-01/ES/Arquitectura Para La Eficiencia Energetica Y Sostenibilidad En Entornos Residenciales/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/Junta de Andalucía//P11-TIC-8052/ES/Simon. Saving Energy by Intelligent Monitoring/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/Generalitat de Catalunya//2009 SGR 523/ es_ES
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería de Sistemas y Automática - Departament d'Enginyeria de Sistemes i Automàtica es_ES
dc.description.bibliographicCitation Leal, Y.; Gonzalez-Abril, L.; Lorencio, C.; Bondía Company, J.; Vehí, J. (2013). Detection of correct and incorrect measurements in real-time continuous glucose monitoring systems applying a postprocessing support vector machine. IEEE Transactions on Biomedical Engineering. 60(7):1891-1899. https://doi.org/10.1109/TBME.2013.2244092 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1109/TBME.2013.2244092 es_ES
dc.description.upvformatpinicio 1891 es_ES
dc.description.upvformatpfin 1899 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 60 es_ES
dc.description.issue 7 es_ES
dc.identifier.pmid 23380841 es_ES
dc.relation.pasarela S\256086 es_ES
dc.contributor.funder Junta de Andalucía es_ES
dc.contributor.funder Universitat de Girona es_ES
dc.contributor.funder Generalitat de Catalunya es_ES
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem