Mostrar el registro sencillo del ítem
dc.contributor.author | Beisenova, Aidana | es_ES |
dc.contributor.author | Issatayeva, Aizhan | es_ES |
dc.contributor.author | Sovetov, Sultan | es_ES |
dc.contributor.author | Korganbayev, Sanzhar | es_ES |
dc.contributor.author | Jelbuldina, Madina | es_ES |
dc.contributor.author | Ashikbayeva, Zhannat | es_ES |
dc.contributor.author | Blanc, Wilfried | es_ES |
dc.contributor.author | Schena, Emiliano | es_ES |
dc.contributor.author | Sales Maicas, Salvador | es_ES |
dc.contributor.author | Molardi, Carlo | es_ES |
dc.contributor.author | Tosi, Daniele | es_ES |
dc.date.accessioned | 2020-11-10T04:32:54Z | |
dc.date.available | 2020-11-10T04:32:54Z | |
dc.date.issued | 2019-03-01 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/154502 | |
dc.description.abstract | [EN] We propose a setup for multiplexed distributed optical fiber sensors capable of resolving temperature distribution in thermo-therapies, with a spatial resolution of 2.5 mm over multiple fibers interrogated simultaneously. The setup is based on optical backscatter reflectometry (OBR) applied to optical fibers having backscattered power significantly larger than standard fibers (36.5 dB), obtained through MgO doping. The setup is based on a scattering-level multiplexing, which allows interrogating all the sensing fibers simultaneously, thanks to the fact that the backscattered power can be unambiguously associated to each fiber. The setup has been validated for the planar measurement of temperature profiles in ex vivo radiofrequency ablation, obtaining the measurement of temperature over a surface of 96 total points (4 fibers, 8 sensing points per cu). The spatial resolution obtained for the planar measurement allows extending distributed sensing to surface, or even three-dimensional, geometries performing temperature sensing in the tissue with millimeter resolution in multiple dimensions. | es_ES |
dc.description.sponsorship | The research has been supported by ORAU program at Nazarbayev University (grants LIFESTART 2017-2019 and FOSTHER2018-2020), by ANR project Nice-DREAM (grant ANR-14-CE07-0016-03), and by project DIMENSION TEC2017 88029-R funded by the Spanish Ministry of Economy and Competitiveness. This work was partly supported by the SIRASI project - Sistema Robotico a supporto della Riabilitazione di Arto Superiore e Inferiore (Bando INTESE - CUP: F86D15000050002). | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Optical Society of America | es_ES |
dc.relation.ispartof | Biomedical Optics Express | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject.classification | TEORIA DE LA SEÑAL Y COMUNICACIONES | es_ES |
dc.title | Multi-fiber distributed thermal profiling of minimally invasive thermal ablation with scattering-level multiplexing in MgO-doped fibers | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1364/BOE.10.001282 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/ANR//ANR-14-CE07-0016/FR/DRawing of nanoparticlEs-doped Amorphous Materials/Nice-DREAM/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/TEC2017-88029-R/ES/DISPOTIVOS EN FIBRAS ESPECIALES MULTIMODO%2FMULTINUCLEO PARA REDES DE COMUNICACIONES Y APLICACIONES DE SENSORES/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions | es_ES |
dc.description.bibliographicCitation | Beisenova, A.; Issatayeva, A.; Sovetov, S.; Korganbayev, S.; Jelbuldina, M.; Ashikbayeva, Z.; Blanc, W.... (2019). Multi-fiber distributed thermal profiling of minimally invasive thermal ablation with scattering-level multiplexing in MgO-doped fibers. Biomedical Optics Express. 10(3):1282-1296. https://doi.org/10.1364/BOE.10.001282 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1364/BOE.10.001282 | es_ES |
dc.description.upvformatpinicio | 1282 | es_ES |
dc.description.upvformatpfin | 1296 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 10 | es_ES |
dc.description.issue | 3 | es_ES |
dc.identifier.eissn | 2156-7085 | es_ES |
dc.identifier.pmid | 30891346 | es_ES |
dc.identifier.pmcid | PMC6420269 | es_ES |
dc.relation.pasarela | S\406574 | es_ES |
dc.contributor.funder | Agencia Estatal de Investigación | es_ES |
dc.contributor.funder | Oak Ridge Associated Universities | es_ES |
dc.contributor.funder | Agence Nationale de la Recherche, Francia | es_ES |
dc.description.references | Goldberg, S. N., Gazelle, G. S., Compton, C. C., Mueller, P. R., & Tanabe, K. K. (2000). Treatment of intrahepatic malignancy with radiofrequency ablation. Cancer, 88(11), 2452-2463. doi:10.1002/1097-0142(20000601)88:11<2452::aid-cncr5>3.0.co;2-3 | es_ES |
dc.description.references | Padma, S., Martinie, J. B., & Iannitti, D. A. (2009). Liver tumor ablation: Percutaneous and open approaches. Journal of Surgical Oncology, 100(8), 619-634. doi:10.1002/jso.21364 | es_ES |
dc.description.references | Sapareto, S. A., & Dewey, W. C. (1984). Thermal dose determination in cancer therapy. International Journal of Radiation Oncology*Biology*Physics, 10(6), 787-800. doi:10.1016/0360-3016(84)90379-1 | es_ES |
dc.description.references | Shaw, A., ter Haar, G., Haller, J., & Wilkens, V. (2015). Towards a dosimetric framework for therapeutic ultrasound. International Journal of Hyperthermia, 31(2), 182-192. doi:10.3109/02656736.2014.997311 | es_ES |
dc.description.references | Lubner, M. G., Brace, C. L., Hinshaw, J. L., & Lee, F. T. (2010). Microwave Tumor Ablation: Mechanism of Action, Clinical Results, and Devices. Journal of Vascular and Interventional Radiology, 21(8), S192-S203. doi:10.1016/j.jvir.2010.04.007 | es_ES |
dc.description.references | Kennedy, J. E. (2005). High-intensity focused ultrasound in the treatment of solid tumours. Nature Reviews Cancer, 5(4), 321-327. doi:10.1038/nrc1591 | es_ES |
dc.description.references | Yang, X. (2017). Science to Practice: Enhancing Photothermal Ablation of Colorectal Liver Metastases with Targeted Hybrid Nanoparticles. Radiology, 285(3), 699-701. doi:10.1148/radiol.2017170993 | es_ES |
dc.description.references | Tosi, D., Schena, E., Molardi, C., & Korganbayev, S. (2018). Fiber optic sensors for sub-centimeter spatially resolved measurements: Review and biomedical applications. Optical Fiber Technology, 43, 6-19. doi:10.1016/j.yofte.2018.03.007 | es_ES |
dc.description.references | Manns, F., Milne, P. J., Gonzalez-Cirre, X., Denham, D. B., Parel, J.-M., & Robinson, D. S. (1998). In Situ temperature measurements with thermocouple probes during laser interstitial thermotherapy (LITT): Quantification and correction of a measurement artifact. Lasers in Surgery and Medicine, 23(2), 94-103. doi:10.1002/(sici)1096-9101(1998)23:2<94::aid-lsm7>3.0.co;2-q | es_ES |
dc.description.references | Saccomandi, P., Schena, E., & Silvestri, S. (2013). Techniques for temperature monitoring during laser-induced thermotherapy: An overview. International Journal of Hyperthermia, 29(7), 609-619. doi:10.3109/02656736.2013.832411 | es_ES |
dc.description.references | Froggatt, M. (1996). Distributed measurement of the complex modulation of a photoinduced Bragg grating in an optical fiber. Applied Optics, 35(25), 5162. doi:10.1364/ao.35.005162 | es_ES |
dc.description.references | Macchi, E. G., Tosi, D., Braschi, G., Gallati, M., Cigada, A., Busca, G., & Lewis, E. (2014). Optical fiber sensors-based temperature distribution measurement inex vivoradiofrequency ablation with submillimeter resolution. Journal of Biomedical Optics, 19(11), 117004. doi:10.1117/1.jbo.19.11.117004 | es_ES |
dc.description.references | Palumbo, G., Iadicicco, A., Tosi, D., Verze, P., Carlomagno, N., Tammaro, V., … Campopiano, S. (2016). Temperature profile of ex-vivo organs during radio frequency thermal ablation by fiber Bragg gratings. Journal of Biomedical Optics, 21(11), 117003. doi:10.1117/1.jbo.21.11.117003 | es_ES |
dc.description.references | Parent, F., Loranger, S., Mandal, K. K., Iezzi, V. L., Lapointe, J., Boisvert, J.-S., … Kashyap, R. (2017). Enhancement of accuracy in shape sensing of surgical needles using optical frequency domain reflectometry in optical fibers. Biomedical Optics Express, 8(4), 2210. doi:10.1364/boe.8.002210 | es_ES |
dc.description.references | MacChesney, J. B., O’Connor, P. B., & Presby, H. M. (1974). A new technique for the preparation of low-loss and graded-index optical fibers. Proceedings of the IEEE, 62(9), 1280-1281. doi:10.1109/proc.1974.9608 | es_ES |
dc.description.references | Blanc, W., Mauroy, V., Nguyen, L., Shivakiran Bhaktha, B. N., Sebbah, P., Pal, B. P., & Dussardier, B. (2011). Fabrication of Rare Earth-Doped Transparent Glass Ceramic Optical Fibers by Modified Chemical Vapor Deposition. Journal of the American Ceramic Society, 94(8), 2315-2318. doi:10.1111/j.1551-2916.2011.04672.x | es_ES |
dc.description.references | Blanc, W., Guillermier, C., & Dussardier, B. (2012). Composition of nanoparticles in optical fibers by Secondary Ion Mass Spectrometry. Optical Materials Express, 2(11), 1504. doi:10.1364/ome.2.001504 | es_ES |
dc.description.references | Todd, N., Diakite, M., Payne, A., & Parker, D. L. (2013). In vivo evaluation of multi-echo hybrid PRF/T1 approach for temperature monitoring during breast MR-guided focused ultrasound surgery treatments. Magnetic Resonance in Medicine, 72(3), 793-799. doi:10.1002/mrm.24976 | es_ES |