- -

Multi-fiber distributed thermal profiling of minimally invasive thermal ablation with scattering-level multiplexing in MgO-doped fibers

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Multi-fiber distributed thermal profiling of minimally invasive thermal ablation with scattering-level multiplexing in MgO-doped fibers

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Beisenova, Aidana es_ES
dc.contributor.author Issatayeva, Aizhan es_ES
dc.contributor.author Sovetov, Sultan es_ES
dc.contributor.author Korganbayev, Sanzhar es_ES
dc.contributor.author Jelbuldina, Madina es_ES
dc.contributor.author Ashikbayeva, Zhannat es_ES
dc.contributor.author Blanc, Wilfried es_ES
dc.contributor.author Schena, Emiliano es_ES
dc.contributor.author Sales Maicas, Salvador es_ES
dc.contributor.author Molardi, Carlo es_ES
dc.contributor.author Tosi, Daniele es_ES
dc.date.accessioned 2020-11-10T04:32:54Z
dc.date.available 2020-11-10T04:32:54Z
dc.date.issued 2019-03-01 es_ES
dc.identifier.uri http://hdl.handle.net/10251/154502
dc.description.abstract [EN] We propose a setup for multiplexed distributed optical fiber sensors capable of resolving temperature distribution in thermo-therapies, with a spatial resolution of 2.5 mm over multiple fibers interrogated simultaneously. The setup is based on optical backscatter reflectometry (OBR) applied to optical fibers having backscattered power significantly larger than standard fibers (36.5 dB), obtained through MgO doping. The setup is based on a scattering-level multiplexing, which allows interrogating all the sensing fibers simultaneously, thanks to the fact that the backscattered power can be unambiguously associated to each fiber. The setup has been validated for the planar measurement of temperature profiles in ex vivo radiofrequency ablation, obtaining the measurement of temperature over a surface of 96 total points (4 fibers, 8 sensing points per cu). The spatial resolution obtained for the planar measurement allows extending distributed sensing to surface, or even three-dimensional, geometries performing temperature sensing in the tissue with millimeter resolution in multiple dimensions. es_ES
dc.description.sponsorship The research has been supported by ORAU program at Nazarbayev University (grants LIFESTART 2017-2019 and FOSTHER2018-2020), by ANR project Nice-DREAM (grant ANR-14-CE07-0016-03), and by project DIMENSION TEC2017 88029-R funded by the Spanish Ministry of Economy and Competitiveness. This work was partly supported by the SIRASI project - Sistema Robotico a supporto della Riabilitazione di Arto Superiore e Inferiore (Bando INTESE - CUP: F86D15000050002). es_ES
dc.language Inglés es_ES
dc.publisher Optical Society of America es_ES
dc.relation.ispartof Biomedical Optics Express es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject.classification TEORIA DE LA SEÑAL Y COMUNICACIONES es_ES
dc.title Multi-fiber distributed thermal profiling of minimally invasive thermal ablation with scattering-level multiplexing in MgO-doped fibers es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1364/BOE.10.001282 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/ANR//ANR-14-CE07-0016/FR/DRawing of nanoparticlEs-doped Amorphous Materials/Nice-DREAM/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/TEC2017-88029-R/ES/DISPOTIVOS EN FIBRAS ESPECIALES MULTIMODO%2FMULTINUCLEO PARA REDES DE COMUNICACIONES Y APLICACIONES DE SENSORES/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions es_ES
dc.description.bibliographicCitation Beisenova, A.; Issatayeva, A.; Sovetov, S.; Korganbayev, S.; Jelbuldina, M.; Ashikbayeva, Z.; Blanc, W.... (2019). Multi-fiber distributed thermal profiling of minimally invasive thermal ablation with scattering-level multiplexing in MgO-doped fibers. Biomedical Optics Express. 10(3):1282-1296. https://doi.org/10.1364/BOE.10.001282 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1364/BOE.10.001282 es_ES
dc.description.upvformatpinicio 1282 es_ES
dc.description.upvformatpfin 1296 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 10 es_ES
dc.description.issue 3 es_ES
dc.identifier.eissn 2156-7085 es_ES
dc.identifier.pmid 30891346 es_ES
dc.identifier.pmcid PMC6420269 es_ES
dc.relation.pasarela S\406574 es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder Oak Ridge Associated Universities es_ES
dc.contributor.funder Agence Nationale de la Recherche, Francia es_ES
dc.description.references Goldberg, S. N., Gazelle, G. S., Compton, C. C., Mueller, P. R., & Tanabe, K. K. (2000). Treatment of intrahepatic malignancy with radiofrequency ablation. Cancer, 88(11), 2452-2463. doi:10.1002/1097-0142(20000601)88:11<2452::aid-cncr5>3.0.co;2-3 es_ES
dc.description.references Padma, S., Martinie, J. B., & Iannitti, D. A. (2009). Liver tumor ablation: Percutaneous and open approaches. Journal of Surgical Oncology, 100(8), 619-634. doi:10.1002/jso.21364 es_ES
dc.description.references Sapareto, S. A., & Dewey, W. C. (1984). Thermal dose determination in cancer therapy. International Journal of Radiation Oncology*Biology*Physics, 10(6), 787-800. doi:10.1016/0360-3016(84)90379-1 es_ES
dc.description.references Shaw, A., ter Haar, G., Haller, J., & Wilkens, V. (2015). Towards a dosimetric framework for therapeutic ultrasound. International Journal of Hyperthermia, 31(2), 182-192. doi:10.3109/02656736.2014.997311 es_ES
dc.description.references Lubner, M. G., Brace, C. L., Hinshaw, J. L., & Lee, F. T. (2010). Microwave Tumor Ablation: Mechanism of Action, Clinical Results, and Devices. Journal of Vascular and Interventional Radiology, 21(8), S192-S203. doi:10.1016/j.jvir.2010.04.007 es_ES
dc.description.references Kennedy, J. E. (2005). High-intensity focused ultrasound in the treatment of solid tumours. Nature Reviews Cancer, 5(4), 321-327. doi:10.1038/nrc1591 es_ES
dc.description.references Yang, X. (2017). Science to Practice: Enhancing Photothermal Ablation of Colorectal Liver Metastases with Targeted Hybrid Nanoparticles. Radiology, 285(3), 699-701. doi:10.1148/radiol.2017170993 es_ES
dc.description.references Tosi, D., Schena, E., Molardi, C., & Korganbayev, S. (2018). Fiber optic sensors for sub-centimeter spatially resolved measurements: Review and biomedical applications. Optical Fiber Technology, 43, 6-19. doi:10.1016/j.yofte.2018.03.007 es_ES
dc.description.references Manns, F., Milne, P. J., Gonzalez-Cirre, X., Denham, D. B., Parel, J.-M., & Robinson, D. S. (1998). In Situ temperature measurements with thermocouple probes during laser interstitial thermotherapy (LITT): Quantification and correction of a measurement artifact. Lasers in Surgery and Medicine, 23(2), 94-103. doi:10.1002/(sici)1096-9101(1998)23:2<94::aid-lsm7>3.0.co;2-q es_ES
dc.description.references Saccomandi, P., Schena, E., & Silvestri, S. (2013). Techniques for temperature monitoring during laser-induced thermotherapy: An overview. International Journal of Hyperthermia, 29(7), 609-619. doi:10.3109/02656736.2013.832411 es_ES
dc.description.references Froggatt, M. (1996). Distributed measurement of the complex modulation of a photoinduced Bragg grating in an optical fiber. Applied Optics, 35(25), 5162. doi:10.1364/ao.35.005162 es_ES
dc.description.references Macchi, E. G., Tosi, D., Braschi, G., Gallati, M., Cigada, A., Busca, G., & Lewis, E. (2014). Optical fiber sensors-based temperature distribution measurement inex vivoradiofrequency ablation with submillimeter resolution. Journal of Biomedical Optics, 19(11), 117004. doi:10.1117/1.jbo.19.11.117004 es_ES
dc.description.references Palumbo, G., Iadicicco, A., Tosi, D., Verze, P., Carlomagno, N., Tammaro, V., … Campopiano, S. (2016). Temperature profile of ex-vivo organs during radio frequency thermal ablation by fiber Bragg gratings. Journal of Biomedical Optics, 21(11), 117003. doi:10.1117/1.jbo.21.11.117003 es_ES
dc.description.references Parent, F., Loranger, S., Mandal, K. K., Iezzi, V. L., Lapointe, J., Boisvert, J.-S., … Kashyap, R. (2017). Enhancement of accuracy in shape sensing of surgical needles using optical frequency domain reflectometry in optical fibers. Biomedical Optics Express, 8(4), 2210. doi:10.1364/boe.8.002210 es_ES
dc.description.references MacChesney, J. B., O’Connor, P. B., & Presby, H. M. (1974). A new technique for the preparation of low-loss and graded-index optical fibers. Proceedings of the IEEE, 62(9), 1280-1281. doi:10.1109/proc.1974.9608 es_ES
dc.description.references Blanc, W., Mauroy, V., Nguyen, L., Shivakiran Bhaktha, B. N., Sebbah, P., Pal, B. P., & Dussardier, B. (2011). Fabrication of Rare Earth-Doped Transparent Glass Ceramic Optical Fibers by Modified Chemical Vapor Deposition. Journal of the American Ceramic Society, 94(8), 2315-2318. doi:10.1111/j.1551-2916.2011.04672.x es_ES
dc.description.references Blanc, W., Guillermier, C., & Dussardier, B. (2012). Composition of nanoparticles in optical fibers by Secondary Ion Mass Spectrometry. Optical Materials Express, 2(11), 1504. doi:10.1364/ome.2.001504 es_ES
dc.description.references Todd, N., Diakite, M., Payne, A., & Parker, D. L. (2013). In vivo evaluation of multi-echo hybrid PRF/T1 approach for temperature monitoring during breast MR-guided focused ultrasound surgery treatments. Magnetic Resonance in Medicine, 72(3), 793-799. doi:10.1002/mrm.24976 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem