- -

Compressive strength and microstructure of alkali-activated blast furnace slag/sewage sludge ash (GGBS/SSA) blends cured at room temperature

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Compressive strength and microstructure of alkali-activated blast furnace slag/sewage sludge ash (GGBS/SSA) blends cured at room temperature

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Tashima, M.M. es_ES
dc.contributor.author Reig, L. es_ES
dc.contributor.author Santini, M. A., Jr. es_ES
dc.contributor.author Moraes, J.C.B es_ES
dc.contributor.author Akasaki, J. L. es_ES
dc.contributor.author Paya Bernabeu, Jorge Juan es_ES
dc.contributor.author Borrachero Rosado, María Victoria es_ES
dc.contributor.author Soriano Martinez, Lourdes es_ES
dc.date.accessioned 2020-11-10T04:32:57Z
dc.date.available 2020-11-10T04:32:57Z
dc.date.issued 2017-07 es_ES
dc.identifier.issn 1877-2641 es_ES
dc.identifier.uri http://hdl.handle.net/10251/154503
dc.description.abstract [EN] In the present work, ground granulated blast furnace slag (GGBS) and sewage sludge ash (SSA) blends were assessed for the production of alkali-activated pastes and mortars. Percentages of SSA to substitute GGBS ranged from 0 to 30 wt% and sodium concentrations of 6¿10 mol kg-1 were used for the activating solutions. Pastes and mortars were cured at 20 C for up to 90 days. Raw materials were characterised by granulometric analysis, XRF, XRD, FTIR and SEM techniques. The replacement percentage of GGBS by SSA and the sodium hydroxide concentration of the alkaline activator were optimised to produce mortar with compressive strengths close to 30 MPa after 28 curing days at room temperature. Best results were obtained in samples blended with 20 wt% SSA activated with 6 mol kg-1 NaOH solutions which, according to the XRD, FTIR and microscopic results,contained higher amounts of (N,C)¿A¿S¿H gel. The potential use of SSA for the development of alternative cementitious materials at room temperature has been demonstrated. es_ES
dc.description.sponsorship The authors acknowledge FAPESP (processo 2013/25254-5), Santander Universidades (program: Becas Iberoame¿rica Jo¿venes Profesores Investigadores Espan a 2014 , Grant to Lucia Reig), CNPq (No 14/2013 processo 478057/2013-0) and the scanning electron microscopy services of FEIS/UNESP. es_ES
dc.language Inglés es_ES
dc.publisher Springer-Verlag es_ES
dc.relation.ispartof Waste and Biomass Valorization es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Sewage sludge ash es_ES
dc.subject Waste management es_ES
dc.subject Alkali-activated cement es_ES
dc.subject Compressive strength es_ES
dc.subject.classification INGENIERIA DE LA CONSTRUCCION es_ES
dc.title Compressive strength and microstructure of alkali-activated blast furnace slag/sewage sludge ash (GGBS/SSA) blends cured at room temperature es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s12649-016-9659-1 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/FAPESP//2013%2F25254-5/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/CNPq//478057%2F2013-0/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería de la Construcción y de Proyectos de Ingeniería Civil - Departament d'Enginyeria de la Construcció i de Projectes d'Enginyeria Civil es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto de Ciencia y Tecnología del Hormigón - Institut de Ciència i Tecnologia del Formigó es_ES
dc.description.bibliographicCitation Tashima, M.; Reig, L.; Santini, MAJ.; Moraes, J.; Akasaki, JL.; Paya Bernabeu, JJ.; Borrachero Rosado, MV.... (2017). Compressive strength and microstructure of alkali-activated blast furnace slag/sewage sludge ash (GGBS/SSA) blends cured at room temperature. Waste and Biomass Valorization. 8(5):1441-1451. https://doi.org/10.1007/s12649-016-9659-1 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1007/s12649-016-9659-1 es_ES
dc.description.upvformatpinicio 1441 es_ES
dc.description.upvformatpfin 1451 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 8 es_ES
dc.description.issue 5 es_ES
dc.relation.pasarela S\354958 es_ES
dc.contributor.funder Santander Universidades es_ES
dc.contributor.funder Fundação de Amparo à Pesquisa do Estado de São Paulo es_ES
dc.contributor.funder Conselho Nacional de Desenvolvimento Científico e Tecnológico, Brasil es_ES
dc.description.references Cheeseman, C.R., Virdi, G.S.: Properties and microstructure of lightweight aggregate produced from sintered sewage sludge ash. Resour. Conserv. Recycl. 45(1), 18–30 (2005) es_ES
dc.description.references Pedrosa, M.M., Vieira, G.E.G., Sousa, J.F., Pickler, A.C., Leal, E.R.M., Milhomen, C.C.: Produção e tratamento de lodo de esgoto–uma revisão. Rev. Lib. 11(16), 149–160 (2010) es_ES
dc.description.references Baeza-Brotons, F., Garces, P., Paya, P., Saval, J.M.: Portland cement systems with addition of sewage sludge ash. Application in concretes for the manufacture of blocks. J. Clean. Prod. 82, 112–124 (2014) es_ES
dc.description.references Smol, M., Kulczycka, J., Henclik, A., Gorazda, K., Wzorek, Z.: The possible use of sewage sludge ash (SSA) in the construction industry as a way towards a circular economy. J. Clean. Prod. 95, 45–54 (2015) es_ES
dc.description.references Ministerio de Agricultura, Alimentación y Medio Ambiente. http://www.magrama.gob.es/es/calidad-y-evaluacion-ambiental/temas/prevencion-y-gestion-residuos/flujos/lodos-depuradora . Accessed 10 Feb 2016 es_ES
dc.description.references Donatello, S., Cheeseman, C.R.: Recycling and recovery routes for incinerated sewage sludge ash (ISSA): a review. Waste Manag. 33(11), 2328–2340 (2013) es_ES
dc.description.references Lynn, C.J., Dhir, R., Ghataora, G.S., West, R.P.: Sewage sludge ash characteristics and potential for use in concrete. Constr. Build. Mater. 98, 767–779 (2015) es_ES
dc.description.references Yusuf, R.O., Noor, Z.Z., Fadhil, M.D., Abba, A.H.: Use of sewage sludge ash (SSA) in the production of cement and concrete—a review. Int. J. Glob. Environ. Issues 12(2/3/4), 214–228 (2012) es_ES
dc.description.references Yang, J., Shi, Y., Yang, X., Liang, M., Li, Y., Li, Y., Ye, N.: Durability of autoclaved construction materials of sewage sludge-cement-fly ash-furnace slag. Constr. Build. Mater. 48, 398–405 (2013) es_ES
dc.description.references Monzó, J., Payá, J., Borrachero, M.V., Peris-Mora, E.: Mechanical behavior of mortars containing sewage sludge ash (SSA) and Portland cements with different tricalcium aluminate content. Cem. Concr. Res. 29(1), 87–94 (1999) es_ES
dc.description.references Monzó, J., Payá, J., Borrachero, M.V., Girbés, I.: Reuse of sewage sludge ashes (SSA) in cement mixtures: the effect of SSA on the workability of cement mortars. Waste Manag. 23(4), 373–381 (2003) es_ES
dc.description.references Tuan, B.L.A., Hwang, C.L., Lin, K.L., Chen, Y.Y., Young, M.P.: Development of lightweight aggregate from sewage sludge and waste glass powder for concrete. Constr. Build. Mater. 47, 334–339 (2013) es_ES
dc.description.references Lin, D.F., Chang, W.C., Yuan, C., Luo, H.L.: Production and characterization of glazed tiles containing incinerated sewage sludge. Waste Manag. 28(3), 502–508 (2008) es_ES
dc.description.references Reig, L., Tashima, M.M., Borrachero, M.V., Monzó, J., Cheeseman, C.R., Payá, J.: Properties and microstructure of alkali-activated red clay brick waste. Constr. Build. Mater. 43, 98–106 (2013) es_ES
dc.description.references Shi, C., Krivenko, P.V., Roy, D.: Alkali-Activated Cements and Concretes. Taylor and Francis, London (2006) es_ES
dc.description.references Fernández-Jimenéz, A., Puertas, F.: The alkali-silica reaction in alkali-activated granulated slag mortars with reactive aggregate. Cem. Concr. Res. 32, 1019–1024 (2002) es_ES
dc.description.references Deb, P.S., Nath, P., Sarker, P.K.: The effects of ground granulated blast-furnace slag blending with fly ash and activator content on the workability and strength properties of geopolymer concrete cured at ambient temperature. Mater. Des. 62, 32–39 (2014) es_ES
dc.description.references Islam, A., Alengaram, J.U., Jumaat, Z.M., Bashar, I.I.: The development of compressive strength of ground granulated blast furnace slag-palm oil fuel ash-fly ash based geopolymer mortar. Mater. Des. 56, 833–841 (2014) es_ES
dc.description.references Duxson, P., Fernández-Jiménez, A., Provis, J.L., Lukey, G.C., Palomo, A., van Deventer, J.S.J.: Geopolymer technology: the current state of the art. J. Mater. Sci. 42(9), 2917–2933 (2007) es_ES
dc.description.references Akçaözoğlu, S.: Recycling of waste PET granules as aggregate in alkali-activated blast furnace slag/metakaolin blends. Constr. Build. Mater. 58, 31–37 (2014) es_ES
dc.description.references Yamaguchi, N., Ikeda, K.: Preparation of geopolymeric materials from sewage sludge slag with special emphasis to the matrix compositions. J. Ceram. Soc. Jpn. 118(1374), 107–112 (2010) es_ES
dc.description.references Cyr, M., Coutand, M., Clastres, P.: Technological and environmental behavior of sewage sludge ash (SSA) in cement-based materials. Cem. Concr. Res. 37(8), 1278–1289 (2007) es_ES
dc.description.references Torres-Carrasco, M., Rodríguez-Puertas, C., Alonso, M., Puertas, F.: Alkali activated slag cements using waste glass as alternative activators. Rheological behaviour. Cerám. Vidrio 54, 45–57 (2015) es_ES
dc.description.references Wang, S.D., Scrivener, K.L.: Hydration products of alkali activated slag cement. Cem. Concr. Res. 25(3), 561–571 (1995) es_ES
dc.description.references Wzorek, Z., Jodko, M., Gorazda, K., Rzepecki, T.: Extraction of phosphorus compounds from ashes from thermal processing of sewage sludge. J. Loss Prev. Process Ind. 19, 39–50 (2006) es_ES
dc.description.references Renaudin, G., Russias, J., Leroux, F., Frizon, F., Cau-dit-Coumes, C.: Structural characterization of C–S–H and C–A–S–H samples-part I: long-range order investigated by Rietveld analyses. J. Solid State Chem. 182, 3312–3319 (2009) es_ES
dc.description.references Li, C., Sun, H., Li, L.: A review: the comparison between alkali-activated slag (Si + Ca) and metakaolin (Si + Al) cements. Cem. Concr. Res. 40, 1341–1349 (2010) es_ES
dc.description.references Puertas, F., Fernández-Jiménez, A., Blanco-Varela, M.T.: Pore solution in alkali-activated slag cement pastes. Relation to the composition and structure of calcium silicate hydrate. Cem. Concr. Res. 34, 139–148 (2004) es_ES
dc.description.references Wang, S-D.: Alkaline Activation of Slag. Ph.D. Thesis, Imperial College, University of London (1995) es_ES
dc.description.references Provis, J.L., van Deventer, J.S.J.: Geopolymers, Structure, Processing, Properties and Industrial Applications. Woodhead Publishing, New York (2009) es_ES
dc.description.references García Lodeiro, I., Macphee, D.E., Palomo, A., Fernández-Jiménez, A.: Effect of alkalis on fresh C–S–H gels. FTIR analysis. Cem. Concr. Res. 39(3), 147–153 (2009) es_ES
dc.description.references Criado, M., Fernández-Jiménez, A., Palomo, A.: Alkali activation of fly ash: effect of the SiO2/Na2O ratio. Part I: FTIR study. Microporous Mesoporous Mater. 106(1–3), 180–191 (2007) es_ES
dc.description.references Pacewska, B., Nowacka, M., Wilińska, I., Kubissa, W., Antonovich, V.: Studies on the influence of spent FCC catalyst on hydration of calcium aluminate cements at ambient temperature. J. Therm. Anal. Calorim. 105(1), 129–140 (2011) es_ES
dc.description.references Fernández-Carrasco, L., Torréns-Martín, D., Martínez-Ramírez, S.: Carbonation of ternary building cementing materials. Cem. Concr. Compos. 34(10), 1180–1186 (2012) es_ES
dc.description.references Fernández-Carrasco, L., Vázquez, T.: Aplication de la espectroscopia infrarroja al estudio de cemento aluminoso. Mater. Constr. 46(241), 39–51 (1996) es_ES
dc.description.references García-Lodeiro, I., Fernández-Jiménez, A., Palomo, A., Macphee, D.E.: Effect of calcium additions on N–A–S–H cementitious gels. J. Am. Ceram. Soc. 93(7), 1934–1940 (2010) es_ES
dc.description.references Juenger, M.C.G., Winnefeld, F., Provis, J.L., Ideker, J.H.: Advances in alternative cementitious binders. Cem. Concr. Res. 41(12), 1232–1243 (2011) es_ES
dc.description.references Granizo, M.L., Alonso, S., Branco-Varela, M.T., Palomo, A.: Alkaline activation of metakaolin : effect of calcium hydroxide in the products of reaction. J. Am. Ceram. Soc. 85(1), 225–231 (2002) es_ES
dc.description.references Mozgawa, W., Deja, J.: Spectroscopic studies of alkaline activated slag geopolymers. J. Mol. Struct. 924–926, 434–441 (2009) es_ES
dc.description.references Palacios, M., Puertas, F.: Effect of shrinkage-reducing admixtures on the properties of alkali-activated slag mortars and pastes. Cem. Concr. Res. 37, 691–701 (2007) es_ES
dc.description.references Rajaokarivony-Andriambololona, Z., Thomassin, J.H., Baillif, P., Touray, J.C.: Experimental hydration of two synthetic glassy blast furnace slags in water and alkaline solutions (NaOH and KOH 0.1 N) at 40 °C: structure, composition and origin of the hydrated layer. J. Mater. Sci. 25, 2399–2410 (1990) es_ES
dc.description.references Liew, Y.M., Kamarudin, H., Mutafa al Bakri, A.M., Luqman, M., Khairul Nizar, I., Ruzaidi, C.M.: Processing and characterization of calcined kaolin cement powder. Constr. Build. Mater. 30, 794–802 (2012) es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem