Mostrar el registro sencillo del ítem
dc.contributor.author | Tashima, M.M. | es_ES |
dc.contributor.author | Reig, L. | es_ES |
dc.contributor.author | Santini, M. A., Jr. | es_ES |
dc.contributor.author | Moraes, J.C.B | es_ES |
dc.contributor.author | Akasaki, J. L. | es_ES |
dc.contributor.author | Paya Bernabeu, Jorge Juan | es_ES |
dc.contributor.author | Borrachero Rosado, María Victoria | es_ES |
dc.contributor.author | Soriano Martinez, Lourdes | es_ES |
dc.date.accessioned | 2020-11-10T04:32:57Z | |
dc.date.available | 2020-11-10T04:32:57Z | |
dc.date.issued | 2017-07 | es_ES |
dc.identifier.issn | 1877-2641 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/154503 | |
dc.description.abstract | [EN] In the present work, ground granulated blast furnace slag (GGBS) and sewage sludge ash (SSA) blends were assessed for the production of alkali-activated pastes and mortars. Percentages of SSA to substitute GGBS ranged from 0 to 30 wt% and sodium concentrations of 6¿10 mol kg-1 were used for the activating solutions. Pastes and mortars were cured at 20 C for up to 90 days. Raw materials were characterised by granulometric analysis, XRF, XRD, FTIR and SEM techniques. The replacement percentage of GGBS by SSA and the sodium hydroxide concentration of the alkaline activator were optimised to produce mortar with compressive strengths close to 30 MPa after 28 curing days at room temperature. Best results were obtained in samples blended with 20 wt% SSA activated with 6 mol kg-1 NaOH solutions which, according to the XRD, FTIR and microscopic results,contained higher amounts of (N,C)¿A¿S¿H gel. The potential use of SSA for the development of alternative cementitious materials at room temperature has been demonstrated. | es_ES |
dc.description.sponsorship | The authors acknowledge FAPESP (processo 2013/25254-5), Santander Universidades (program: Becas Iberoame¿rica Jo¿venes Profesores Investigadores Espan a 2014 , Grant to Lucia Reig), CNPq (No 14/2013 processo 478057/2013-0) and the scanning electron microscopy services of FEIS/UNESP. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Springer-Verlag | es_ES |
dc.relation.ispartof | Waste and Biomass Valorization | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Sewage sludge ash | es_ES |
dc.subject | Waste management | es_ES |
dc.subject | Alkali-activated cement | es_ES |
dc.subject | Compressive strength | es_ES |
dc.subject.classification | INGENIERIA DE LA CONSTRUCCION | es_ES |
dc.title | Compressive strength and microstructure of alkali-activated blast furnace slag/sewage sludge ash (GGBS/SSA) blends cured at room temperature | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1007/s12649-016-9659-1 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/FAPESP//2013%2F25254-5/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/CNPq//478057%2F2013-0/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería de la Construcción y de Proyectos de Ingeniería Civil - Departament d'Enginyeria de la Construcció i de Projectes d'Enginyeria Civil | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto de Ciencia y Tecnología del Hormigón - Institut de Ciència i Tecnologia del Formigó | es_ES |
dc.description.bibliographicCitation | Tashima, M.; Reig, L.; Santini, MAJ.; Moraes, J.; Akasaki, JL.; Paya Bernabeu, JJ.; Borrachero Rosado, MV.... (2017). Compressive strength and microstructure of alkali-activated blast furnace slag/sewage sludge ash (GGBS/SSA) blends cured at room temperature. Waste and Biomass Valorization. 8(5):1441-1451. https://doi.org/10.1007/s12649-016-9659-1 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1007/s12649-016-9659-1 | es_ES |
dc.description.upvformatpinicio | 1441 | es_ES |
dc.description.upvformatpfin | 1451 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 8 | es_ES |
dc.description.issue | 5 | es_ES |
dc.relation.pasarela | S\354958 | es_ES |
dc.contributor.funder | Santander Universidades | es_ES |
dc.contributor.funder | Fundação de Amparo à Pesquisa do Estado de São Paulo | es_ES |
dc.contributor.funder | Conselho Nacional de Desenvolvimento Científico e Tecnológico, Brasil | es_ES |
dc.description.references | Cheeseman, C.R., Virdi, G.S.: Properties and microstructure of lightweight aggregate produced from sintered sewage sludge ash. Resour. Conserv. Recycl. 45(1), 18–30 (2005) | es_ES |
dc.description.references | Pedrosa, M.M., Vieira, G.E.G., Sousa, J.F., Pickler, A.C., Leal, E.R.M., Milhomen, C.C.: Produção e tratamento de lodo de esgoto–uma revisão. Rev. Lib. 11(16), 149–160 (2010) | es_ES |
dc.description.references | Baeza-Brotons, F., Garces, P., Paya, P., Saval, J.M.: Portland cement systems with addition of sewage sludge ash. Application in concretes for the manufacture of blocks. J. Clean. Prod. 82, 112–124 (2014) | es_ES |
dc.description.references | Smol, M., Kulczycka, J., Henclik, A., Gorazda, K., Wzorek, Z.: The possible use of sewage sludge ash (SSA) in the construction industry as a way towards a circular economy. J. Clean. Prod. 95, 45–54 (2015) | es_ES |
dc.description.references | Ministerio de Agricultura, Alimentación y Medio Ambiente. http://www.magrama.gob.es/es/calidad-y-evaluacion-ambiental/temas/prevencion-y-gestion-residuos/flujos/lodos-depuradora . Accessed 10 Feb 2016 | es_ES |
dc.description.references | Donatello, S., Cheeseman, C.R.: Recycling and recovery routes for incinerated sewage sludge ash (ISSA): a review. Waste Manag. 33(11), 2328–2340 (2013) | es_ES |
dc.description.references | Lynn, C.J., Dhir, R., Ghataora, G.S., West, R.P.: Sewage sludge ash characteristics and potential for use in concrete. Constr. Build. Mater. 98, 767–779 (2015) | es_ES |
dc.description.references | Yusuf, R.O., Noor, Z.Z., Fadhil, M.D., Abba, A.H.: Use of sewage sludge ash (SSA) in the production of cement and concrete—a review. Int. J. Glob. Environ. Issues 12(2/3/4), 214–228 (2012) | es_ES |
dc.description.references | Yang, J., Shi, Y., Yang, X., Liang, M., Li, Y., Li, Y., Ye, N.: Durability of autoclaved construction materials of sewage sludge-cement-fly ash-furnace slag. Constr. Build. Mater. 48, 398–405 (2013) | es_ES |
dc.description.references | Monzó, J., Payá, J., Borrachero, M.V., Peris-Mora, E.: Mechanical behavior of mortars containing sewage sludge ash (SSA) and Portland cements with different tricalcium aluminate content. Cem. Concr. Res. 29(1), 87–94 (1999) | es_ES |
dc.description.references | Monzó, J., Payá, J., Borrachero, M.V., Girbés, I.: Reuse of sewage sludge ashes (SSA) in cement mixtures: the effect of SSA on the workability of cement mortars. Waste Manag. 23(4), 373–381 (2003) | es_ES |
dc.description.references | Tuan, B.L.A., Hwang, C.L., Lin, K.L., Chen, Y.Y., Young, M.P.: Development of lightweight aggregate from sewage sludge and waste glass powder for concrete. Constr. Build. Mater. 47, 334–339 (2013) | es_ES |
dc.description.references | Lin, D.F., Chang, W.C., Yuan, C., Luo, H.L.: Production and characterization of glazed tiles containing incinerated sewage sludge. Waste Manag. 28(3), 502–508 (2008) | es_ES |
dc.description.references | Reig, L., Tashima, M.M., Borrachero, M.V., Monzó, J., Cheeseman, C.R., Payá, J.: Properties and microstructure of alkali-activated red clay brick waste. Constr. Build. Mater. 43, 98–106 (2013) | es_ES |
dc.description.references | Shi, C., Krivenko, P.V., Roy, D.: Alkali-Activated Cements and Concretes. Taylor and Francis, London (2006) | es_ES |
dc.description.references | Fernández-Jimenéz, A., Puertas, F.: The alkali-silica reaction in alkali-activated granulated slag mortars with reactive aggregate. Cem. Concr. Res. 32, 1019–1024 (2002) | es_ES |
dc.description.references | Deb, P.S., Nath, P., Sarker, P.K.: The effects of ground granulated blast-furnace slag blending with fly ash and activator content on the workability and strength properties of geopolymer concrete cured at ambient temperature. Mater. Des. 62, 32–39 (2014) | es_ES |
dc.description.references | Islam, A., Alengaram, J.U., Jumaat, Z.M., Bashar, I.I.: The development of compressive strength of ground granulated blast furnace slag-palm oil fuel ash-fly ash based geopolymer mortar. Mater. Des. 56, 833–841 (2014) | es_ES |
dc.description.references | Duxson, P., Fernández-Jiménez, A., Provis, J.L., Lukey, G.C., Palomo, A., van Deventer, J.S.J.: Geopolymer technology: the current state of the art. J. Mater. Sci. 42(9), 2917–2933 (2007) | es_ES |
dc.description.references | Akçaözoğlu, S.: Recycling of waste PET granules as aggregate in alkali-activated blast furnace slag/metakaolin blends. Constr. Build. Mater. 58, 31–37 (2014) | es_ES |
dc.description.references | Yamaguchi, N., Ikeda, K.: Preparation of geopolymeric materials from sewage sludge slag with special emphasis to the matrix compositions. J. Ceram. Soc. Jpn. 118(1374), 107–112 (2010) | es_ES |
dc.description.references | Cyr, M., Coutand, M., Clastres, P.: Technological and environmental behavior of sewage sludge ash (SSA) in cement-based materials. Cem. Concr. Res. 37(8), 1278–1289 (2007) | es_ES |
dc.description.references | Torres-Carrasco, M., Rodríguez-Puertas, C., Alonso, M., Puertas, F.: Alkali activated slag cements using waste glass as alternative activators. Rheological behaviour. Cerám. Vidrio 54, 45–57 (2015) | es_ES |
dc.description.references | Wang, S.D., Scrivener, K.L.: Hydration products of alkali activated slag cement. Cem. Concr. Res. 25(3), 561–571 (1995) | es_ES |
dc.description.references | Wzorek, Z., Jodko, M., Gorazda, K., Rzepecki, T.: Extraction of phosphorus compounds from ashes from thermal processing of sewage sludge. J. Loss Prev. Process Ind. 19, 39–50 (2006) | es_ES |
dc.description.references | Renaudin, G., Russias, J., Leroux, F., Frizon, F., Cau-dit-Coumes, C.: Structural characterization of C–S–H and C–A–S–H samples-part I: long-range order investigated by Rietveld analyses. J. Solid State Chem. 182, 3312–3319 (2009) | es_ES |
dc.description.references | Li, C., Sun, H., Li, L.: A review: the comparison between alkali-activated slag (Si + Ca) and metakaolin (Si + Al) cements. Cem. Concr. Res. 40, 1341–1349 (2010) | es_ES |
dc.description.references | Puertas, F., Fernández-Jiménez, A., Blanco-Varela, M.T.: Pore solution in alkali-activated slag cement pastes. Relation to the composition and structure of calcium silicate hydrate. Cem. Concr. Res. 34, 139–148 (2004) | es_ES |
dc.description.references | Wang, S-D.: Alkaline Activation of Slag. Ph.D. Thesis, Imperial College, University of London (1995) | es_ES |
dc.description.references | Provis, J.L., van Deventer, J.S.J.: Geopolymers, Structure, Processing, Properties and Industrial Applications. Woodhead Publishing, New York (2009) | es_ES |
dc.description.references | García Lodeiro, I., Macphee, D.E., Palomo, A., Fernández-Jiménez, A.: Effect of alkalis on fresh C–S–H gels. FTIR analysis. Cem. Concr. Res. 39(3), 147–153 (2009) | es_ES |
dc.description.references | Criado, M., Fernández-Jiménez, A., Palomo, A.: Alkali activation of fly ash: effect of the SiO2/Na2O ratio. Part I: FTIR study. Microporous Mesoporous Mater. 106(1–3), 180–191 (2007) | es_ES |
dc.description.references | Pacewska, B., Nowacka, M., Wilińska, I., Kubissa, W., Antonovich, V.: Studies on the influence of spent FCC catalyst on hydration of calcium aluminate cements at ambient temperature. J. Therm. Anal. Calorim. 105(1), 129–140 (2011) | es_ES |
dc.description.references | Fernández-Carrasco, L., Torréns-Martín, D., Martínez-Ramírez, S.: Carbonation of ternary building cementing materials. Cem. Concr. Compos. 34(10), 1180–1186 (2012) | es_ES |
dc.description.references | Fernández-Carrasco, L., Vázquez, T.: Aplication de la espectroscopia infrarroja al estudio de cemento aluminoso. Mater. Constr. 46(241), 39–51 (1996) | es_ES |
dc.description.references | García-Lodeiro, I., Fernández-Jiménez, A., Palomo, A., Macphee, D.E.: Effect of calcium additions on N–A–S–H cementitious gels. J. Am. Ceram. Soc. 93(7), 1934–1940 (2010) | es_ES |
dc.description.references | Juenger, M.C.G., Winnefeld, F., Provis, J.L., Ideker, J.H.: Advances in alternative cementitious binders. Cem. Concr. Res. 41(12), 1232–1243 (2011) | es_ES |
dc.description.references | Granizo, M.L., Alonso, S., Branco-Varela, M.T., Palomo, A.: Alkaline activation of metakaolin : effect of calcium hydroxide in the products of reaction. J. Am. Ceram. Soc. 85(1), 225–231 (2002) | es_ES |
dc.description.references | Mozgawa, W., Deja, J.: Spectroscopic studies of alkaline activated slag geopolymers. J. Mol. Struct. 924–926, 434–441 (2009) | es_ES |
dc.description.references | Palacios, M., Puertas, F.: Effect of shrinkage-reducing admixtures on the properties of alkali-activated slag mortars and pastes. Cem. Concr. Res. 37, 691–701 (2007) | es_ES |
dc.description.references | Rajaokarivony-Andriambololona, Z., Thomassin, J.H., Baillif, P., Touray, J.C.: Experimental hydration of two synthetic glassy blast furnace slags in water and alkaline solutions (NaOH and KOH 0.1 N) at 40 °C: structure, composition and origin of the hydrated layer. J. Mater. Sci. 25, 2399–2410 (1990) | es_ES |
dc.description.references | Liew, Y.M., Kamarudin, H., Mutafa al Bakri, A.M., Luqman, M., Khairul Nizar, I., Ruzaidi, C.M.: Processing and characterization of calcined kaolin cement powder. Constr. Build. Mater. 30, 794–802 (2012) | es_ES |