- -

Analytical and discrete solutions for the incipient motion of ellipsoidal sediment particles

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Analytical and discrete solutions for the incipient motion of ellipsoidal sediment particles

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Bravo, Rafael es_ES
dc.contributor.author Ortiz, Pablo es_ES
dc.contributor.author Pérez-Aparicio, José L. es_ES
dc.date.accessioned 2020-11-11T04:31:54Z
dc.date.available 2020-11-11T04:31:54Z
dc.date.issued 2018 es_ES
dc.identifier.issn 0022-1686 es_ES
dc.identifier.uri http://hdl.handle.net/10251/154796
dc.description.abstract [EN] This work introduces analytical and numerical approaches to compute the incipient motion of ellipsoidal sediment particles. Initiation of motion of spherical particles is dominated by rolling mode. However, solutions for initiation of motion for non-spherical grains have to incorporate rolling, sliding, and mixed modes. The proposed approaches include a wide variety of shapes and inclinations that represent realistic configurations of sediment bed layers. The numerical procedure is based on the discrete element method, simulating the micro-mechanics of the sediment as an aggregate of rigid ellipsoids interacting by contact. The numerical solution covers a range of incipient movements that cannot be covered by the analytical approach. Hence, some trapped modes observed in analytical calculations are complemented by the numerical computation of threshold stresses. The main results are organized as novel extended Shields diagrams for non-spherical grains, where non-dimensional critical shear stress is represented in terms of friction Reynolds number. es_ES
dc.description.sponsorship This work was supported by the Ministerio de Ciencia e Innovación Grant [#BIA-2012-32918 and #BIA-2015-64994-P (MINECO/FEDER)]. es_ES
dc.language Inglés es_ES
dc.publisher Taylor & Francis es_ES
dc.relation.ispartof Journal of Hydraulic Research es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Bedload es_ES
dc.subject Computational methods in hydro-environment research and fluid dynamics es_ES
dc.subject Discrete element method es_ES
dc.subject Ellipsoidal particles es_ES
dc.subject Fluid particle interactions es_ES
dc.subject.classification MECANICA DE LOS MEDIOS CONTINUOS Y TEORIA DE ESTRUCTURAS es_ES
dc.title Analytical and discrete solutions for the incipient motion of ellipsoidal sediment particles es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1080/00221686.2017.1289263 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//BIA2012-32918/ES/METODOS CONTINUOS Y DISCRETOS PARA FLUJOS DE MATERIALES FRICCIONALES/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//BIA2015-64994-P/ES/MODELOS DE INTERFASES FLUIDO-MATERIALES COHESIVOS-NO-COHESIVOS Y FLUIDO-CAVIDADES EN CAUCES Y ESTRUCTURAS HIDRAULICAS/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Mecánica de los Medios Continuos y Teoría de Estructuras - Departament de Mecànica dels Medis Continus i Teoria d'Estructures es_ES
dc.description.bibliographicCitation Bravo, R.; Ortiz, P.; Pérez-Aparicio, JL. (2018). Analytical and discrete solutions for the incipient motion of ellipsoidal sediment particles. Journal of Hydraulic Research. 56(1):29-43. https://doi.org/10.1080/00221686.2017.1289263 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1080/00221686.2017.1289263 es_ES
dc.description.upvformatpinicio 29 es_ES
dc.description.upvformatpfin 43 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 56 es_ES
dc.description.issue 1 es_ES
dc.relation.pasarela S\362726 es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Belytschko, T., & Neal, M. O. (1991). Contact-impact by the pinball algorithm with penalty and Lagrangian methods. International Journal for Numerical Methods in Engineering, 31(3), 547-572. doi:10.1002/nme.1620310309 es_ES
dc.description.references Bravo, R., Ortiz, P., & Pérez-Aparicio, J. L. (2014). Incipient sediment transport for non-cohesive landforms by the discrete element method (DEM). Applied Mathematical Modelling, 38(4), 1326-1337. doi:10.1016/j.apm.2013.08.010 es_ES
dc.description.references Bravo, R., Pérez-Aparicio, J. L., & Gómez-Hernández, J. J. (2015). Numerical sedimentation particle-size analysis using the Discrete Element Method. Advances in Water Resources, 86, 58-72. doi:10.1016/j.advwatres.2015.09.024 es_ES
dc.description.references Bravo, R., Pérez-Aparicio, J. L., & Laursen, T. A. (2012). An energy consistent frictional dissipating algorithm for particle contact problems. International Journal for Numerical Methods in Engineering, 92(9), 753-781. doi:10.1002/nme.4346 es_ES
dc.description.references Buffington, J. M., & Montgomery, D. R. (1997). A systematic analysis of eight decades of incipient motion studies, with special reference to gravel-bedded rivers. Water Resources Research, 33(8), 1993-2029. doi:10.1029/96wr03190 es_ES
dc.description.references Cheng, N.-S., & Chiew, Y.-M. (1999). Incipient sediment motion with upward seepage. Journal of Hydraulic Research, 37(5), 665-681. doi:10.1080/00221689909498522 es_ES
dc.description.references Chiew, Y.-M., & Parker, G. (1994). Incipient sediment motion on non-horizontal slopes. Journal of Hydraulic Research, 32(5), 649-660. doi:10.1080/00221689409498706 es_ES
dc.description.references Derksen, J. J. (2015). Simulations of granular bed erosion due to a mildly turbulent shear flow. Journal of Hydraulic Research, 53(5), 622-632. doi:10.1080/00221686.2015.1077354 es_ES
dc.description.references Dey, S. (1999). Sediment threshold. Applied Mathematical Modelling, 23(5), 399-417. doi:10.1016/s0307-904x(98)10081-1 es_ES
dc.description.references Dey, S. (2003). Threshold of sediment motion on combined transverse and longitudinal sloping beds. Journal of Hydraulic Research, 41(4), 405-415. doi:10.1080/00221680309499985 es_ES
dc.description.references Dey, S., Sarker, H. K. D., & Debnath, K. (1999). Sediment Threshold under Stream Flow on Horizontal and Sloping Beds. Journal of Engineering Mechanics, 125(5), 545-553. doi:10.1061/(asce)0733-9399(1999)125:5(545) es_ES
dc.description.references Hölzer, A., & Sommerfeld, M. (2008). New simple correlation formula for the drag coefficient of non-spherical particles. Powder Technology, 184(3), 361-365. doi:10.1016/j.powtec.2007.08.021 es_ES
dc.description.references James, C. S. (1990). Prediction of entrainment conditions for nonuniform, noncohesive sediments. Journal of Hydraulic Research, 28(1), 25-41. doi:10.1080/00221689009499145 es_ES
dc.description.references Ji, C., Munjiza, A., Avital, E., Ma, J., & Williams, J. J. R. (2013). Direct numerical simulation of sediment entrainment in turbulent channel flow. Physics of Fluids, 25(5), 056601. doi:10.1063/1.4807075 es_ES
dc.description.references Klamkin, M. S. (1971). Elementary Approximations to the Area of N-Dimensional Ellipsoids. The American Mathematical Monthly, 78(3), 280. doi:10.2307/2317530 es_ES
dc.description.references Mandø, M., & Rosendahl, L. (2010). On the motion of non-spherical particles at high Reynolds number. Powder Technology, 202(1-3), 1-13. doi:10.1016/j.powtec.2010.05.001 es_ES
dc.description.references MILLER, M. C., McCAVE, I. N., & KOMAR, P. D. (1977). Threshold of sediment motion under unidirectional currents. Sedimentology, 24(4), 507-527. doi:10.1111/j.1365-3091.1977.tb00136.x es_ES
dc.description.references Wan Mohtar, W. H. M., & Munro, R. J. (2013). Threshold criteria for incipient sediment motion on an inclined bedform in the presence of oscillating-grid turbulence. Physics of Fluids, 25(1), 015103. doi:10.1063/1.4774341 es_ES
dc.description.references Ortiz, P., & Smolarkiewicz, P. K. (2006). Numerical simulation of sand dune evolution in severe winds. International Journal for Numerical Methods in Fluids, 50(10), 1229-1246. doi:10.1002/fld.1138 es_ES
dc.description.references Ortiz, P., & Smolarkiewicz, P. K. (2009). Coupling the dynamics of boundary layers and evolutionary dunes. Physical Review E, 79(4). doi:10.1103/physreve.79.041307 es_ES
dc.description.references Van Rijn, L. C. (1984). Sediment Transport, Part I: Bed Load Transport. Journal of Hydraulic Engineering, 110(10), 1431-1456. doi:10.1061/(asce)0733-9429(1984)110:10(1431) es_ES
dc.description.references Shi, G.-H., & Goodman, R. E. (1985). Two dimensional discontinuous deformation analysis. International Journal for Numerical and Analytical Methods in Geomechanics, 9(6), 541-556. doi:10.1002/nag.1610090604 es_ES
dc.description.references Shields, A. (1936). Application of similarity principles and turbulence research to bed-load movement (Tech. Rep.). Lab. for Hydraulic Water Resources. es_ES
dc.description.references Wellmann, C., Lillie, C., & Wriggers, P. (2008). A contact detection algorithm for superellipsoids based on the common‐normal concept. Engineering Computations, 25(5), 432-442. doi:10.1108/02644400810881374 es_ES
dc.description.references Wiberg, P. L., & Smith, J. D. (1985). A theoretical model for saltating grains in water. Journal of Geophysical Research, 90(C4), 7341. doi:10.1029/jc090ic04p07341 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem