Mostrar el registro sencillo del ítem
dc.contributor.author | Bravo, Rafael | es_ES |
dc.contributor.author | Ortiz, Pablo | es_ES |
dc.contributor.author | Pérez-Aparicio, José L. | es_ES |
dc.date.accessioned | 2020-11-11T04:31:54Z | |
dc.date.available | 2020-11-11T04:31:54Z | |
dc.date.issued | 2018 | es_ES |
dc.identifier.issn | 0022-1686 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/154796 | |
dc.description.abstract | [EN] This work introduces analytical and numerical approaches to compute the incipient motion of ellipsoidal sediment particles. Initiation of motion of spherical particles is dominated by rolling mode. However, solutions for initiation of motion for non-spherical grains have to incorporate rolling, sliding, and mixed modes. The proposed approaches include a wide variety of shapes and inclinations that represent realistic configurations of sediment bed layers. The numerical procedure is based on the discrete element method, simulating the micro-mechanics of the sediment as an aggregate of rigid ellipsoids interacting by contact. The numerical solution covers a range of incipient movements that cannot be covered by the analytical approach. Hence, some trapped modes observed in analytical calculations are complemented by the numerical computation of threshold stresses. The main results are organized as novel extended Shields diagrams for non-spherical grains, where non-dimensional critical shear stress is represented in terms of friction Reynolds number. | es_ES |
dc.description.sponsorship | This work was supported by the Ministerio de Ciencia e Innovación Grant [#BIA-2012-32918 and #BIA-2015-64994-P (MINECO/FEDER)]. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Taylor & Francis | es_ES |
dc.relation.ispartof | Journal of Hydraulic Research | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Bedload | es_ES |
dc.subject | Computational methods in hydro-environment research and fluid dynamics | es_ES |
dc.subject | Discrete element method | es_ES |
dc.subject | Ellipsoidal particles | es_ES |
dc.subject | Fluid particle interactions | es_ES |
dc.subject.classification | MECANICA DE LOS MEDIOS CONTINUOS Y TEORIA DE ESTRUCTURAS | es_ES |
dc.title | Analytical and discrete solutions for the incipient motion of ellipsoidal sediment particles | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1080/00221686.2017.1289263 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//BIA2012-32918/ES/METODOS CONTINUOS Y DISCRETOS PARA FLUJOS DE MATERIALES FRICCIONALES/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//BIA2015-64994-P/ES/MODELOS DE INTERFASES FLUIDO-MATERIALES COHESIVOS-NO-COHESIVOS Y FLUIDO-CAVIDADES EN CAUCES Y ESTRUCTURAS HIDRAULICAS/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Mecánica de los Medios Continuos y Teoría de Estructuras - Departament de Mecànica dels Medis Continus i Teoria d'Estructures | es_ES |
dc.description.bibliographicCitation | Bravo, R.; Ortiz, P.; Pérez-Aparicio, JL. (2018). Analytical and discrete solutions for the incipient motion of ellipsoidal sediment particles. Journal of Hydraulic Research. 56(1):29-43. https://doi.org/10.1080/00221686.2017.1289263 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1080/00221686.2017.1289263 | es_ES |
dc.description.upvformatpinicio | 29 | es_ES |
dc.description.upvformatpfin | 43 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 56 | es_ES |
dc.description.issue | 1 | es_ES |
dc.relation.pasarela | S\362726 | es_ES |
dc.contributor.funder | European Regional Development Fund | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.description.references | Belytschko, T., & Neal, M. O. (1991). Contact-impact by the pinball algorithm with penalty and Lagrangian methods. International Journal for Numerical Methods in Engineering, 31(3), 547-572. doi:10.1002/nme.1620310309 | es_ES |
dc.description.references | Bravo, R., Ortiz, P., & Pérez-Aparicio, J. L. (2014). Incipient sediment transport for non-cohesive landforms by the discrete element method (DEM). Applied Mathematical Modelling, 38(4), 1326-1337. doi:10.1016/j.apm.2013.08.010 | es_ES |
dc.description.references | Bravo, R., Pérez-Aparicio, J. L., & Gómez-Hernández, J. J. (2015). Numerical sedimentation particle-size analysis using the Discrete Element Method. Advances in Water Resources, 86, 58-72. doi:10.1016/j.advwatres.2015.09.024 | es_ES |
dc.description.references | Bravo, R., Pérez-Aparicio, J. L., & Laursen, T. A. (2012). An energy consistent frictional dissipating algorithm for particle contact problems. International Journal for Numerical Methods in Engineering, 92(9), 753-781. doi:10.1002/nme.4346 | es_ES |
dc.description.references | Buffington, J. M., & Montgomery, D. R. (1997). A systematic analysis of eight decades of incipient motion studies, with special reference to gravel-bedded rivers. Water Resources Research, 33(8), 1993-2029. doi:10.1029/96wr03190 | es_ES |
dc.description.references | Cheng, N.-S., & Chiew, Y.-M. (1999). Incipient sediment motion with upward seepage. Journal of Hydraulic Research, 37(5), 665-681. doi:10.1080/00221689909498522 | es_ES |
dc.description.references | Chiew, Y.-M., & Parker, G. (1994). Incipient sediment motion on non-horizontal slopes. Journal of Hydraulic Research, 32(5), 649-660. doi:10.1080/00221689409498706 | es_ES |
dc.description.references | Derksen, J. J. (2015). Simulations of granular bed erosion due to a mildly turbulent shear flow. Journal of Hydraulic Research, 53(5), 622-632. doi:10.1080/00221686.2015.1077354 | es_ES |
dc.description.references | Dey, S. (1999). Sediment threshold. Applied Mathematical Modelling, 23(5), 399-417. doi:10.1016/s0307-904x(98)10081-1 | es_ES |
dc.description.references | Dey, S. (2003). Threshold of sediment motion on combined transverse and longitudinal sloping beds. Journal of Hydraulic Research, 41(4), 405-415. doi:10.1080/00221680309499985 | es_ES |
dc.description.references | Dey, S., Sarker, H. K. D., & Debnath, K. (1999). Sediment Threshold under Stream Flow on Horizontal and Sloping Beds. Journal of Engineering Mechanics, 125(5), 545-553. doi:10.1061/(asce)0733-9399(1999)125:5(545) | es_ES |
dc.description.references | Hölzer, A., & Sommerfeld, M. (2008). New simple correlation formula for the drag coefficient of non-spherical particles. Powder Technology, 184(3), 361-365. doi:10.1016/j.powtec.2007.08.021 | es_ES |
dc.description.references | James, C. S. (1990). Prediction of entrainment conditions for nonuniform, noncohesive sediments. Journal of Hydraulic Research, 28(1), 25-41. doi:10.1080/00221689009499145 | es_ES |
dc.description.references | Ji, C., Munjiza, A., Avital, E., Ma, J., & Williams, J. J. R. (2013). Direct numerical simulation of sediment entrainment in turbulent channel flow. Physics of Fluids, 25(5), 056601. doi:10.1063/1.4807075 | es_ES |
dc.description.references | Klamkin, M. S. (1971). Elementary Approximations to the Area of N-Dimensional Ellipsoids. The American Mathematical Monthly, 78(3), 280. doi:10.2307/2317530 | es_ES |
dc.description.references | Mandø, M., & Rosendahl, L. (2010). On the motion of non-spherical particles at high Reynolds number. Powder Technology, 202(1-3), 1-13. doi:10.1016/j.powtec.2010.05.001 | es_ES |
dc.description.references | MILLER, M. C., McCAVE, I. N., & KOMAR, P. D. (1977). Threshold of sediment motion under unidirectional currents. Sedimentology, 24(4), 507-527. doi:10.1111/j.1365-3091.1977.tb00136.x | es_ES |
dc.description.references | Wan Mohtar, W. H. M., & Munro, R. J. (2013). Threshold criteria for incipient sediment motion on an inclined bedform in the presence of oscillating-grid turbulence. Physics of Fluids, 25(1), 015103. doi:10.1063/1.4774341 | es_ES |
dc.description.references | Ortiz, P., & Smolarkiewicz, P. K. (2006). Numerical simulation of sand dune evolution in severe winds. International Journal for Numerical Methods in Fluids, 50(10), 1229-1246. doi:10.1002/fld.1138 | es_ES |
dc.description.references | Ortiz, P., & Smolarkiewicz, P. K. (2009). Coupling the dynamics of boundary layers and evolutionary dunes. Physical Review E, 79(4). doi:10.1103/physreve.79.041307 | es_ES |
dc.description.references | Van Rijn, L. C. (1984). Sediment Transport, Part I: Bed Load Transport. Journal of Hydraulic Engineering, 110(10), 1431-1456. doi:10.1061/(asce)0733-9429(1984)110:10(1431) | es_ES |
dc.description.references | Shi, G.-H., & Goodman, R. E. (1985). Two dimensional discontinuous deformation analysis. International Journal for Numerical and Analytical Methods in Geomechanics, 9(6), 541-556. doi:10.1002/nag.1610090604 | es_ES |
dc.description.references | Shields, A. (1936). Application of similarity principles and turbulence research to bed-load movement (Tech. Rep.). Lab. for Hydraulic Water Resources. | es_ES |
dc.description.references | Wellmann, C., Lillie, C., & Wriggers, P. (2008). A contact detection algorithm for superellipsoids based on the common‐normal concept. Engineering Computations, 25(5), 432-442. doi:10.1108/02644400810881374 | es_ES |
dc.description.references | Wiberg, P. L., & Smith, J. D. (1985). A theoretical model for saltating grains in water. Journal of Geophysical Research, 90(C4), 7341. doi:10.1029/jc090ic04p07341 | es_ES |