- -

An Alternate Representation of the Vector of Apparent Power and Unbalanced Power in Three-Phase Electrical Systems

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

An Alternate Representation of the Vector of Apparent Power and Unbalanced Power in Three-Phase Electrical Systems

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Blasco Espinosa, Pedro Angel es_ES
dc.contributor.author Montoya-Mira, Rafael es_ES
dc.contributor.author Diez-Aznar, José-Manuel es_ES
dc.contributor.author Montoya Villena, Rafael es_ES
dc.date.accessioned 2020-11-11T04:32:13Z
dc.date.available 2020-11-11T04:32:13Z
dc.date.issued 2020-06 es_ES
dc.identifier.uri http://hdl.handle.net/10251/154801
dc.description.abstract [EN] Low-voltage distribution systems are typically unbalanced. These ine¿ciencies cause unbalanced powers that can significantly increase the apparent power of the system. Analysing and measuring these ine¿cient powers appropriately allows us to compensate for them and obtain a more e¿cient system. Correcting the imbalance at some nodes can worsen the rest of the system; therefore, it is essential that all nodes are analysed such that action can be taken when necessary. In most studies, the unbalanced power is measured from the modulus. Other more recent studies have proposed phasor expressions of unbalanced powers; however, in both cases, these are not enough to address the compensation of unbalanced powers in systems with unbalanced voltages. In this work, a di¿erent representation of the vector expressions for analysis of the unbalanced powers and the apparent powers of the three-phase linear systems is proposed. Additionally, these vector expressions are extended to nonlinear systems to quantify the harmonic apparent powers. These expressions have been formulated from the power of Buchholz and are valid for systems with unbalanced voltages and currents. To help understand the use of the proposed formulation, a practical case of a three-phase four-wire system with unbalanced loads and voltages is demonstrated. es_ES
dc.description.sponsorship This work is supported by the Spanish Ministry of Science, Innovation and Universities (MICINN) and the European Regional Development Fund (ERDF) under Grant RTI2018-100732-B-C21. es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Applied Sciences es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Unbalanced power es_ES
dc.subject Power theory es_ES
dc.subject Apparent power es_ES
dc.subject Power system es_ES
dc.subject Power quality es_ES
dc.subject.classification INGENIERIA ELECTRICA es_ES
dc.title An Alternate Representation of the Vector of Apparent Power and Unbalanced Power in Three-Phase Electrical Systems es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/app10113756 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-100732-B-C21/ES/CARGADORES DE BATERIAS BIDIRECCIONALES PARA LA INTEGRACION EN MICRORREDES DE VEHICULOS ELECTRICOS Y ESTACIONES DE CARGA ULTRARRAPIDA CON BATERIAS DE RESPALDO/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Eléctrica - Departament d'Enginyeria Elèctrica es_ES
dc.description.bibliographicCitation Blasco Espinosa, PA.; Montoya-Mira, R.; Diez-Aznar, J.; Montoya Villena, R. (2020). An Alternate Representation of the Vector of Apparent Power and Unbalanced Power in Three-Phase Electrical Systems. Applied Sciences. 10(11):1-16. https://doi.org/10.3390/app10113756 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/app10113756 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 16 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 10 es_ES
dc.description.issue 11 es_ES
dc.identifier.eissn 2076-3417 es_ES
dc.relation.pasarela S\414515 es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.description.references Emanuel, A. E. (1993). On the definition of power factor and apparent power in unbalanced polyphase circuits with sinusoidal voltage and currents. IEEE Transactions on Power Delivery, 8(3), 841-852. doi:10.1109/61.252612 es_ES
dc.description.references Willems, J. L. (2004). Reflections on Apparent Power and Power Factor in Nonsinusoidal and Polyphase Situations. IEEE Transactions on Power Delivery, 19(2), 835-840. doi:10.1109/tpwrd.2003.823182 es_ES
dc.description.references Emanuel, A. E. (1999). Apparent power definitions for three-phase systems. IEEE Transactions on Power Delivery, 14(3), 767-772. doi:10.1109/61.772313 es_ES
dc.description.references Czarnecki, L. S. (1994). Misinterpretations of some power properties of electric circuits. IEEE Transactions on Power Delivery, 9(4), 1760-1769. doi:10.1109/61.329509 es_ES
dc.description.references Kersting, W. H. (2001). Causes and effects of unbalanced voltages serving an induction motor. IEEE Transactions on Industry Applications, 37(1), 165-170. doi:10.1109/28.903142 es_ES
dc.description.references Pillay, P., & Manyage, M. (2006). Loss of Life in Induction Machines Operating With Unbalanced Supplies. IEEE Transactions on Energy Conversion, 21(4), 813-822. doi:10.1109/tec.2005.853724 es_ES
dc.description.references Poblador, M. L. A., & Lopez, G. A. R. (2013). Power calculations in nonlinear and unbalanced conditions according to IEEE Std 1459-2010. 2013 Workshop on Power Electronics and Power Quality Applications (PEPQA). doi:10.1109/pepqa.2013.6614957 es_ES
dc.description.references Langella, R., Testa, A., & Emanuel, A. E. (2012). Unbalance Definition for Electrical Power Systems in the Presence of Harmonics and Interharmonics. IEEE Transactions on Instrumentation and Measurement, 61(10), 2622-2631. doi:10.1109/tim.2012.2209909 es_ES
dc.description.references Kukačka, L., Kraus, J., Kolář, M., Dupuis, P., & Zissis, G. (2016). Review of AC power theories under stationary and non‐stationary, clean and distorted conditions. IET Generation, Transmission & Distribution, 10(1), 221-231. doi:10.1049/iet-gtd.2015.0713 es_ES
dc.description.references Chicco, G., Postolache, P., & Toader, C. (2007). Analysis of Three-Phase Systems With Neutral Under Distorted and Unbalanced Conditions in the Symmetrical Component-Based Framework. IEEE Transactions on Power Delivery, 22(1), 674-683. doi:10.1109/tpwrd.2006.887095 es_ES
dc.description.references Paap, G. C. (2000). Symmetrical components in the time domain and their application to power network calculations. IEEE Transactions on Power Systems, 15(2), 522-528. doi:10.1109/59.867135 es_ES
dc.description.references León-Martínez, V., & Montañana-Romeu, J. (2018). Formulations for the apparent and unbalanced power vectors in three-phase sinusoidal systems. Electric Power Systems Research, 160, 37-43. doi:10.1016/j.epsr.2018.01.028 es_ES
dc.description.references Castilla, M., Bravo, J. C., Ordonez, M., & Montano, J. C. (2008). Clifford Theory: A Geometrical Interpretation of Multivectorial Apparent Power. IEEE Transactions on Circuits and Systems I: Regular Papers, 55(10), 3358-3367. doi:10.1109/tcsi.2008.924885 es_ES
dc.description.references Diez, J. M., Blasco, P. A., & Montoya, R. (2016). Formulation of phasor unbalance power: application to sinusoidal power systems. IET Generation, Transmission & Distribution, 10(16), 4178-4186. doi:10.1049/iet-gtd.2016.0730 es_ES
dc.description.references Tongxin Zheng, Makram, E. B., & Girgis, A. A. (2003). Evaluating power system unbalance in the presence of harmonic distortion. IEEE Transactions on Power Delivery, 18(2), 393-397. doi:10.1109/tpwrd.2002.807460 es_ES
dc.description.references Mohamadian, S., & Shoulaie, A. (2011). Comprehensive Definitions for Evaluating Harmonic Distortion and Unbalanced Conditions in Three- and Four-Wire Three-Phase Systems Based on IEEE Standard 1459. IEEE Transactions on Power Delivery, 26(3), 1774-1782. doi:10.1109/tpwrd.2011.2126609 es_ES
dc.description.references Blasco, P. A., Montoya-Mira, R., Diez, J. M., Montoya, R., & Reig, M. J. (2019). Compensation of Reactive Power and Unbalanced Power in Three-Phase Three-Wire Systems Connected to an Infinite Power Network. Applied Sciences, 10(1), 113. doi:10.3390/app10010113 es_ES
dc.description.references Montoya-Mira, R., Blasco, P. A., Diez, J. M., Montoya, R., & Reig, M. J. (2020). Unbalanced and Reactive Currents Compensation in Three-Phase Four-Wire Sinusoidal Power Systems. Applied Sciences, 10(5), 1764. doi:10.3390/app10051764 es_ES
dc.description.references Salmerón, P., Vázquez, J. R., Herrera, R. S., & Litrán, S. P. (2007). Apparent power and power factor in unbalanced and distorted systems. Applications in three phase load compensations. Renewable Energy and Power Quality Journal, 1(05), 442-447. doi:10.24084/repqj05.312 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem