Mostrar el registro sencillo del ítem
dc.contributor.author | Montoya-Mira, Rafael | es_ES |
dc.contributor.author | Blasco Espinosa, Pedro Angel | es_ES |
dc.contributor.author | Diez-Aznar, José-Manuel | es_ES |
dc.contributor.author | Montoya Villena, Rafael | es_ES |
dc.contributor.author | Reig-Pérez, Miguel Jorge | es_ES |
dc.date.accessioned | 2020-11-11T04:32:15Z | |
dc.date.available | 2020-11-11T04:32:15Z | |
dc.date.issued | 2020-03 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/154802 | |
dc.description.abstract | [EN] In an unbalanced linear three-phase electrical system, there are inefficient powers that increase the apparent power supplied by the network, line losses, machine malfunctions, etc. These inefficiencies are mainly due to the use of unbalanced loads. Unlike a three-wire unbalanced system, a four-wire system has zero sequence currents that circulate through the neutral wire and can be compensated by means of compensation equipment, which prevents it from being delivered by the network. To design a compensator that works with unbalanced voltages, it is necessary to consider the interactions between it and the other compensators used to compensate for negative-sequence currents and positive-sequence reactive currents. In this paper, through passive compensation, a new method is proposed to develop the zero sequence current compensation equipment. The method does not require iteration algorithms and is valid for unbalanced voltages. In addition, the interactions between all compensators are analyzed, and the necessary modifications in the calculations are proposed to obtain a total compensation. To facilitate the application of the method and demonstrate its validity, a case study is developed from a three-phase linear four-wire system with unbalanced voltages and loads. The results obtained are compared with other compensation methods that also use passive elements. | es_ES |
dc.description.sponsorship | This work is supported by the Spanish Ministry of Science, Innovation and Universities (MICINN) and the European Regional Development Fund (ERDF) under grant RTI2018-100732-B-C21. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | MDPI AG | es_ES |
dc.relation.ispartof | Applied Sciences | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Unbalanced power | es_ES |
dc.subject | Reactive power | es_ES |
dc.subject | Negative-sequence current | es_ES |
dc.subject | Zero-sequence current | es_ES |
dc.subject | Compensation | es_ES |
dc.subject.classification | INGENIERIA ELECTRICA | es_ES |
dc.subject.classification | INGENIERIA DE LOS PROCESOS DE FABRICACION | es_ES |
dc.title | Unbalanced and Reactive Currents Compensation in Three-Phase Four-Wire Sinusoidal Power Systems | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.3390/app10051764 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-100732-B-C21/ES/CARGADORES DE BATERIAS BIDIRECCIONALES PARA LA INTEGRACION EN MICRORREDES DE VEHICULOS ELECTRICOS Y ESTACIONES DE CARGA ULTRARRAPIDA CON BATERIAS DE RESPALDO/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Eléctrica - Departament d'Enginyeria Elèctrica | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Mecánica y de Materiales - Departament d'Enginyeria Mecànica i de Materials | es_ES |
dc.description.bibliographicCitation | Montoya-Mira, R.; Blasco Espinosa, PA.; Diez-Aznar, J.; Montoya Villena, R.; Reig-Pérez, MJ. (2020). Unbalanced and Reactive Currents Compensation in Three-Phase Four-Wire Sinusoidal Power Systems. Applied Sciences. 10(5):1-23. https://doi.org/10.3390/app10051764 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.3390/app10051764 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 23 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 10 | es_ES |
dc.description.issue | 5 | es_ES |
dc.identifier.eissn | 2076-3417 | es_ES |
dc.relation.pasarela | S\406032 | es_ES |
dc.contributor.funder | Agencia Estatal de Investigación | es_ES |
dc.contributor.funder | European Regional Development Fund | es_ES |
dc.description.references | Sainz, L., Caro, M., & Caro, E. (2009). Analytical Study of the Series Resonance in Power Systems With the Steinmetz Circuit. IEEE Transactions on Power Delivery, 24(4), 2090-2098. doi:10.1109/tpwrd.2009.2028790 | es_ES |
dc.description.references | Emanuel, A. E. (1993). On the definition of power factor and apparent power in unbalanced polyphase circuits with sinusoidal voltage and currents. IEEE Transactions on Power Delivery, 8(3), 841-852. doi:10.1109/61.252612 | es_ES |
dc.description.references | Willems, J. L. (2004). Reflections on Apparent Power and Power Factor in Nonsinusoidal and Polyphase Situations. IEEE Transactions on Power Delivery, 19(2), 835-840. doi:10.1109/tpwrd.2003.823182 | es_ES |
dc.description.references | Pillay, P., & Manyage, M. (2006). Loss of Life in Induction Machines Operating With Unbalanced Supplies. IEEE Transactions on Energy Conversion, 21(4), 813-822. doi:10.1109/tec.2005.853724 | es_ES |
dc.description.references | Poblador, M. L. A., & Lopez, G. A. R. (2013). Power calculations in nonlinear and unbalanced conditions according to IEEE Std 1459-2010. 2013 Workshop on Power Electronics and Power Quality Applications (PEPQA). doi:10.1109/pepqa.2013.6614957 | es_ES |
dc.description.references | IEEE Recommended Practice for Monitoring Electric Power Quality. (s. f.). doi:10.1109/ieeestd.2019.8796486 | es_ES |
dc.description.references | Blasco, P. A., Montoya-Mira, R., Diez, J. M., Montoya, R., & Reig, M. J. (2019). Compensation of Reactive Power and Unbalanced Power in Three-Phase Three-Wire Systems Connected to an Infinite Power Network. Applied Sciences, 10(1), 113. doi:10.3390/app10010113 | es_ES |
dc.description.references | San-Yi Lee, & Chi-Jui Wu. (1993). On-line reactive power compensation schemes for unbalanced three phase four wire distribution feeders. IEEE Transactions on Power Delivery, 8(4), 1958-1965. doi:10.1109/61.248308 | es_ES |
dc.description.references | Otto, R. A., Putman, T. H., & Gyugyi, L. (1978). Principles and Applications of Static, Thyristor-Controlled Shunt Compensators. IEEE Transactions on Power Apparatus and Systems, PAS-97(5), 1935-1945. doi:10.1109/tpas.1978.354690 | es_ES |
dc.description.references | Origa de Oliveira, L. C., Barros Neto, M. C., & de Souza, J. B. (s. f.). Load compensation in four-wire electrical power systems. PowerCon 2000. 2000 International Conference on Power System Technology. Proceedings (Cat. No.00EX409). doi:10.1109/icpst.2000.898206 | es_ES |
dc.description.references | Li, E., Sheng, W., Wang, X., & Wang, B. (2011). Combined compensation strategies based on instantaneous reactive power theory for reactive power compensation and load balancing. 2011 International Conference on Electrical and Control Engineering. doi:10.1109/iceceng.2011.6057765 | es_ES |
dc.description.references | Leon-Martinez, V., & Montanana-Romeu, J. (2014). Representation of load imbalances through reactances. Application to working standards. 2014 16th International Conference on Harmonics and Quality of Power (ICHQP). doi:10.1109/ichqp.2014.6842894 | es_ES |
dc.description.references | Czarnecki, L. S., & Haley, P. M. (2015). Unbalanced Power in Four-Wire Systems and Its Reactive Compensation. IEEE Transactions on Power Delivery, 30(1), 53-63. doi:10.1109/tpwrd.2014.2314599 | es_ES |
dc.description.references | Czarnecki, L. S. (1989). Reactive and unbalanced currents compensation in three-phase asymmetrical circuits under nonsinusoidal conditions. IEEE Transactions on Instrumentation and Measurement, 38(3), 754-759. doi:10.1109/19.32187 | es_ES |
dc.description.references | Czarnecki, L. S. (1988). Orthogonal decomposition of the currents in a 3-phase nonlinear asymmetrical circuit with a nonsinusoidal voltage source. IEEE Transactions on Instrumentation and Measurement, 37(1), 30-34. doi:10.1109/19.2658 | es_ES |
dc.description.references | Pană, A., Băloi, A., & Molnar-Matei, F. (2018). From the Balancing Reactive Compensator to the Balancing Capacitive Compensator. Energies, 11(8), 1979. doi:10.3390/en11081979 | es_ES |