- -

Surface Silylation of Hybrid Benzidinium Lead Perovskite and its Influence on the Photocatalytic Activity

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Surface Silylation of Hybrid Benzidinium Lead Perovskite and its Influence on the Photocatalytic Activity

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Peng, Yong es_ES
dc.contributor.author Albero-Sancho, Josep es_ES
dc.contributor.author García Gómez, Hermenegildo es_ES
dc.date.accessioned 2020-11-13T04:32:19Z
dc.date.available 2020-11-13T04:32:19Z
dc.date.issued 2019-12-18 es_ES
dc.identifier.issn 1867-3880 es_ES
dc.identifier.uri http://hdl.handle.net/10251/154999
dc.description This is the peer reviewed version of the following article: Y. Peng, J. Albero, H. García, ChemCatChem 2019, 11, 6384, which has been published in final form at https://doi.org/10.1002/cctc.201901681. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving. es_ES
dc.description.abstract [EN] Surface coating of benzidinium lead iodide perovskite has been successfully accomplished by silanization with three different silylating agents, obtaining samples with average thickness from 2 to 6 nm as revealed by transmission electron microscopy. The obtained (organo)silica-coated hybrid perovskites exhibit enhanced hydrophobic character and, therefore, increased stability against moisture. However, its photocatalytic activity towards the cis-to-trans isomerization of stilbene diminishes as a function of the coating thickness, although a notable activity for this photocatalytic reaction is still observed. es_ES
dc.description.sponsorship Financial support from the Spanish Ministry of Economy and Competitiveness (Severo Ochoa, and RTI2018-890237-CO2-R1) and the Generalitat Valenciana (Prometeo 2017/083) is gratefully acknowledged. Yong Peng also thanks the Universitat Politecnica de Valencia for a predoctoral scholarship. es_ES
dc.language Inglés es_ES
dc.publisher John Wiley & Sons es_ES
dc.relation MINECO/RTI2018-890237-CO2-R1 es_ES
dc.relation.ispartof ChemCatChem es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Hybrid perovskite es_ES
dc.subject Hydrophobicity es_ES
dc.subject Surface coating es_ES
dc.subject Silylation es_ES
dc.subject Photocatalysis es_ES
dc.subject.classification QUIMICA ORGANICA es_ES
dc.title Surface Silylation of Hybrid Benzidinium Lead Perovskite and its Influence on the Photocatalytic Activity es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1002/cctc.201901681 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEO%2F2017%2F083/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Química - Departament de Química es_ES
dc.description.bibliographicCitation Peng, Y.; Albero-Sancho, J.; García Gómez, H. (2019). Surface Silylation of Hybrid Benzidinium Lead Perovskite and its Influence on the Photocatalytic Activity. ChemCatChem. 11(24):6384-6390. https://doi.org/10.1002/cctc.201901681 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1002/cctc.201901681 es_ES
dc.description.upvformatpinicio 6384 es_ES
dc.description.upvformatpfin 6390 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 11 es_ES
dc.description.issue 24 es_ES
dc.relation.pasarela S\409802 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Q. Jiang Y. Zhao X. Zhang X. Yang Y. Chen Z. Chu Q. Ye X. Li Z. Yin J. You Nat. Photonics2019. es_ES
dc.description.references Kakiage, K., Aoyama, Y., Yano, T., Oya, K., Fujisawa, J., & Hanaya, M. (2015). Highly-efficient dye-sensitized solar cells with collaborative sensitization by silyl-anchor and carboxy-anchor dyes. Chemical Communications, 51(88), 15894-15897. doi:10.1039/c5cc06759f es_ES
dc.description.references Saravanan, R., Gracia, F., & Stephen, A. (2017). Basic Principles, Mechanism, and Challenges of Photocatalysis. Springer Series on Polymer and Composite Materials, 19-40. doi:10.1007/978-3-319-62446-4_2 es_ES
dc.description.references Bisquert, J., Cahen, D., Hodes, G., Rühle, S., & Zaban, A. (2004). Physical Chemical Principles of Photovoltaic Conversion with Nanoparticulate, Mesoporous Dye-Sensitized Solar Cells. The Journal of Physical Chemistry B, 108(24), 8106-8118. doi:10.1021/jp0359283 es_ES
dc.description.references Kamat, P. V. (2017). Semiconductor Surface Chemistry as Holy Grail in Photocatalysis and Photovoltaics. Accounts of Chemical Research, 50(3), 527-531. doi:10.1021/acs.accounts.6b00528 es_ES
dc.description.references Boyd, C. C., Cheacharoen, R., Leijtens, T., & McGehee, M. D. (2018). Understanding Degradation Mechanisms and Improving Stability of Perovskite Photovoltaics. Chemical Reviews, 119(5), 3418-3451. doi:10.1021/acs.chemrev.8b00336 es_ES
dc.description.references Aristidou, N., Eames, C., Sanchez-Molina, I., Bu, X., Kosco, J., Islam, M. S., & Haque, S. A. (2017). Fast oxygen diffusion and iodide defects mediate oxygen-induced degradation of perovskite solar cells. Nature Communications, 8(1). doi:10.1038/ncomms15218 es_ES
dc.description.references Y. Peng J. Albero E. Álvarez H. García Sustainable Energy Fuels2019. es_ES
dc.description.references Cortecchia, D., Neutzner, S., Srimath Kandada, A. R., Mosconi, E., Meggiolaro, D., De Angelis, F., … Petrozza, A. (2016). Broadband Emission in Two-Dimensional Hybrid Perovskites: The Role of Structural Deformation. Journal of the American Chemical Society, 139(1), 39-42. doi:10.1021/jacs.6b10390 es_ES
dc.description.references Kawano, N., Koshimizu, M., Sun, Y., Yahaba, N., Fujimoto, Y., Yanagida, T., & Asai, K. (2014). Effects of Organic Moieties on Luminescence Properties of Organic–Inorganic Layered Perovskite-Type Compounds. The Journal of Physical Chemistry C, 118(17), 9101-9106. doi:10.1021/jp4114305 es_ES
dc.description.references Albero, J., & García, H. (2017). Luminescence control in hybrid perovskites and their applications. Journal of Materials Chemistry C, 5(17), 4098-4110. doi:10.1039/c7tc00714k es_ES
dc.description.references Ronlan, A., Coleman, J., Hammerich, O., & Parker, V. D. (1974). Anodic oxidation of methoxybiphenyls. Effect of the biphenyl linkage on aromatic cation Radical and Dication Stability. Journal of the American Chemical Society, 96(3), 845-849. doi:10.1021/ja00810a033 es_ES
dc.description.references Talipov, M. R., Boddeda, A., Timerghazin, Q. K., & Rathore, R. (2014). Key Role of End-Capping Groups in Optoelectronic Properties of Poly-p-phenylene Cation Radicals. The Journal of Physical Chemistry C, 118(37), 21400-21408. doi:10.1021/jp5082752 es_ES
dc.description.references Zapata, P. A., Huang, Y., Gonzalez-Borja, M. A., & Resasco, D. E. (2013). Silylated hydrophobic zeolites with enhanced tolerance to hot liquid water. Journal of Catalysis, 308, 82-97. doi:10.1016/j.jcat.2013.05.024 es_ES
dc.description.references Bu, J., & Rhee, H. (2000). Catalysis Letters, 65(1/3), 141-145. doi:10.1023/a:1019096617082 es_ES
dc.description.references Kuwahara, Y., Maki, K., Matsumura, Y., Kamegawa, T., Mori, K., & Yamashita, H. (2009). Hydrophobic Modification of a Mesoporous Silica Surface Using a Fluorine-Containing Silylation Agent and Its Application as an Advantageous Host Material for the TiO2 Photocatalyst. The Journal of Physical Chemistry C, 113(4), 1552-1559. doi:10.1021/jp809191v es_ES
dc.description.references Yoshida, W., Castro, R. P., Jou, J.-D., & Cohen, Y. (2001). Multilayer Alkoxysilane Silylation of Oxide Surfaces. Langmuir, 17(19), 5882-5888. doi:10.1021/la001780s es_ES
dc.description.references Berhe, T. A., Su, W.-N., Chen, C.-H., Pan, C.-J., Cheng, J.-H., Chen, H.-M., … Hwang, B.-J. (2016). Organometal halide perovskite solar cells: degradation and stability. Energy & Environmental Science, 9(2), 323-356. doi:10.1039/c5ee02733k es_ES
dc.description.references Velichenko, A. ., Amadelli, R., Baranova, E. ., Girenko, D. ., & Danilov, F. . (2002). Electrodeposition of Co-doped lead dioxide and its physicochemical properties. Journal of Electroanalytical Chemistry, 527(1-2), 56-64. doi:10.1016/s0022-0728(02)00828-8 es_ES
dc.description.references Shmychkova, O., Luk’yanenko, T., Amadelli, R., & Velichenko, A. (2014). Physico-chemical properties of PbO2-anodes doped with Sn4+and complex ions. Journal of Electroanalytical Chemistry, 717-718, 196-201. doi:10.1016/j.jelechem.2014.01.029 es_ES
dc.description.references Pradhan, S., Stavrinadis, A., Gupta, S., Bi, Y., Di Stasio, F., & Konstantatos, G. (2017). Trap-State Suppression and Improved Charge Transport in PbS Quantum Dot Solar Cells with Synergistic Mixed-Ligand Treatments. Small, 13(21), 1700598. doi:10.1002/smll.201700598 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem