Mostrar el registro sencillo del ítem
dc.contributor.author | Peng, Yong | es_ES |
dc.contributor.author | Albero-Sancho, Josep | es_ES |
dc.contributor.author | García Gómez, Hermenegildo | es_ES |
dc.date.accessioned | 2020-11-13T04:32:19Z | |
dc.date.available | 2020-11-13T04:32:19Z | |
dc.date.issued | 2019-12-18 | es_ES |
dc.identifier.issn | 1867-3880 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/154999 | |
dc.description | This is the peer reviewed version of the following article: Y. Peng, J. Albero, H. García, ChemCatChem 2019, 11, 6384, which has been published in final form at https://doi.org/10.1002/cctc.201901681. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving. | es_ES |
dc.description.abstract | [EN] Surface coating of benzidinium lead iodide perovskite has been successfully accomplished by silanization with three different silylating agents, obtaining samples with average thickness from 2 to 6 nm as revealed by transmission electron microscopy. The obtained (organo)silica-coated hybrid perovskites exhibit enhanced hydrophobic character and, therefore, increased stability against moisture. However, its photocatalytic activity towards the cis-to-trans isomerization of stilbene diminishes as a function of the coating thickness, although a notable activity for this photocatalytic reaction is still observed. | es_ES |
dc.description.sponsorship | Financial support from the Spanish Ministry of Economy and Competitiveness (Severo Ochoa, and RTI2018-890237-CO2-R1) and the Generalitat Valenciana (Prometeo 2017/083) is gratefully acknowledged. Yong Peng also thanks the Universitat Politecnica de Valencia for a predoctoral scholarship. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | John Wiley & Sons | es_ES |
dc.relation | MINECO/RTI2018-890237-CO2-R1 | es_ES |
dc.relation.ispartof | ChemCatChem | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Hybrid perovskite | es_ES |
dc.subject | Hydrophobicity | es_ES |
dc.subject | Surface coating | es_ES |
dc.subject | Silylation | es_ES |
dc.subject | Photocatalysis | es_ES |
dc.subject.classification | QUIMICA ORGANICA | es_ES |
dc.title | Surface Silylation of Hybrid Benzidinium Lead Perovskite and its Influence on the Photocatalytic Activity | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1002/cctc.201901681 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//PROMETEO%2F2017%2F083/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Química - Departament de Química | es_ES |
dc.description.bibliographicCitation | Peng, Y.; Albero-Sancho, J.; García Gómez, H. (2019). Surface Silylation of Hybrid Benzidinium Lead Perovskite and its Influence on the Photocatalytic Activity. ChemCatChem. 11(24):6384-6390. https://doi.org/10.1002/cctc.201901681 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1002/cctc.201901681 | es_ES |
dc.description.upvformatpinicio | 6384 | es_ES |
dc.description.upvformatpfin | 6390 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 11 | es_ES |
dc.description.issue | 24 | es_ES |
dc.relation.pasarela | S\409802 | es_ES |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.description.references | Q. Jiang Y. Zhao X. Zhang X. Yang Y. Chen Z. Chu Q. Ye X. Li Z. Yin J. You Nat. Photonics2019. | es_ES |
dc.description.references | Kakiage, K., Aoyama, Y., Yano, T., Oya, K., Fujisawa, J., & Hanaya, M. (2015). Highly-efficient dye-sensitized solar cells with collaborative sensitization by silyl-anchor and carboxy-anchor dyes. Chemical Communications, 51(88), 15894-15897. doi:10.1039/c5cc06759f | es_ES |
dc.description.references | Saravanan, R., Gracia, F., & Stephen, A. (2017). Basic Principles, Mechanism, and Challenges of Photocatalysis. Springer Series on Polymer and Composite Materials, 19-40. doi:10.1007/978-3-319-62446-4_2 | es_ES |
dc.description.references | Bisquert, J., Cahen, D., Hodes, G., Rühle, S., & Zaban, A. (2004). Physical Chemical Principles of Photovoltaic Conversion with Nanoparticulate, Mesoporous Dye-Sensitized Solar Cells. The Journal of Physical Chemistry B, 108(24), 8106-8118. doi:10.1021/jp0359283 | es_ES |
dc.description.references | Kamat, P. V. (2017). Semiconductor Surface Chemistry as Holy Grail in Photocatalysis and Photovoltaics. Accounts of Chemical Research, 50(3), 527-531. doi:10.1021/acs.accounts.6b00528 | es_ES |
dc.description.references | Boyd, C. C., Cheacharoen, R., Leijtens, T., & McGehee, M. D. (2018). Understanding Degradation Mechanisms and Improving Stability of Perovskite Photovoltaics. Chemical Reviews, 119(5), 3418-3451. doi:10.1021/acs.chemrev.8b00336 | es_ES |
dc.description.references | Aristidou, N., Eames, C., Sanchez-Molina, I., Bu, X., Kosco, J., Islam, M. S., & Haque, S. A. (2017). Fast oxygen diffusion and iodide defects mediate oxygen-induced degradation of perovskite solar cells. Nature Communications, 8(1). doi:10.1038/ncomms15218 | es_ES |
dc.description.references | Y. Peng J. Albero E. Álvarez H. García Sustainable Energy Fuels2019. | es_ES |
dc.description.references | Cortecchia, D., Neutzner, S., Srimath Kandada, A. R., Mosconi, E., Meggiolaro, D., De Angelis, F., … Petrozza, A. (2016). Broadband Emission in Two-Dimensional Hybrid Perovskites: The Role of Structural Deformation. Journal of the American Chemical Society, 139(1), 39-42. doi:10.1021/jacs.6b10390 | es_ES |
dc.description.references | Kawano, N., Koshimizu, M., Sun, Y., Yahaba, N., Fujimoto, Y., Yanagida, T., & Asai, K. (2014). Effects of Organic Moieties on Luminescence Properties of Organic–Inorganic Layered Perovskite-Type Compounds. The Journal of Physical Chemistry C, 118(17), 9101-9106. doi:10.1021/jp4114305 | es_ES |
dc.description.references | Albero, J., & García, H. (2017). Luminescence control in hybrid perovskites and their applications. Journal of Materials Chemistry C, 5(17), 4098-4110. doi:10.1039/c7tc00714k | es_ES |
dc.description.references | Ronlan, A., Coleman, J., Hammerich, O., & Parker, V. D. (1974). Anodic oxidation of methoxybiphenyls. Effect of the biphenyl linkage on aromatic cation Radical and Dication Stability. Journal of the American Chemical Society, 96(3), 845-849. doi:10.1021/ja00810a033 | es_ES |
dc.description.references | Talipov, M. R., Boddeda, A., Timerghazin, Q. K., & Rathore, R. (2014). Key Role of End-Capping Groups in Optoelectronic Properties of Poly-p-phenylene Cation Radicals. The Journal of Physical Chemistry C, 118(37), 21400-21408. doi:10.1021/jp5082752 | es_ES |
dc.description.references | Zapata, P. A., Huang, Y., Gonzalez-Borja, M. A., & Resasco, D. E. (2013). Silylated hydrophobic zeolites with enhanced tolerance to hot liquid water. Journal of Catalysis, 308, 82-97. doi:10.1016/j.jcat.2013.05.024 | es_ES |
dc.description.references | Bu, J., & Rhee, H. (2000). Catalysis Letters, 65(1/3), 141-145. doi:10.1023/a:1019096617082 | es_ES |
dc.description.references | Kuwahara, Y., Maki, K., Matsumura, Y., Kamegawa, T., Mori, K., & Yamashita, H. (2009). Hydrophobic Modification of a Mesoporous Silica Surface Using a Fluorine-Containing Silylation Agent and Its Application as an Advantageous Host Material for the TiO2 Photocatalyst. The Journal of Physical Chemistry C, 113(4), 1552-1559. doi:10.1021/jp809191v | es_ES |
dc.description.references | Yoshida, W., Castro, R. P., Jou, J.-D., & Cohen, Y. (2001). Multilayer Alkoxysilane Silylation of Oxide Surfaces. Langmuir, 17(19), 5882-5888. doi:10.1021/la001780s | es_ES |
dc.description.references | Berhe, T. A., Su, W.-N., Chen, C.-H., Pan, C.-J., Cheng, J.-H., Chen, H.-M., … Hwang, B.-J. (2016). Organometal halide perovskite solar cells: degradation and stability. Energy & Environmental Science, 9(2), 323-356. doi:10.1039/c5ee02733k | es_ES |
dc.description.references | Velichenko, A. ., Amadelli, R., Baranova, E. ., Girenko, D. ., & Danilov, F. . (2002). Electrodeposition of Co-doped lead dioxide and its physicochemical properties. Journal of Electroanalytical Chemistry, 527(1-2), 56-64. doi:10.1016/s0022-0728(02)00828-8 | es_ES |
dc.description.references | Shmychkova, O., Luk’yanenko, T., Amadelli, R., & Velichenko, A. (2014). Physico-chemical properties of PbO2-anodes doped with Sn4+and complex ions. Journal of Electroanalytical Chemistry, 717-718, 196-201. doi:10.1016/j.jelechem.2014.01.029 | es_ES |
dc.description.references | Pradhan, S., Stavrinadis, A., Gupta, S., Bi, Y., Di Stasio, F., & Konstantatos, G. (2017). Trap-State Suppression and Improved Charge Transport in PbS Quantum Dot Solar Cells with Synergistic Mixed-Ligand Treatments. Small, 13(21), 1700598. doi:10.1002/smll.201700598 | es_ES |