- -

Nickel exsolution driven phase transformation from an n=2 to an n=1 Ruddlesden Popper manganite for methane steam reforming reaction in SOFC conditions

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Nickel exsolution driven phase transformation from an n=2 to an n=1 Ruddlesden Popper manganite for methane steam reforming reaction in SOFC conditions

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Vecino-Mantilla, Sebastián es_ES
dc.contributor.author Gauthier-Maradei, Paola es_ES
dc.contributor.author Huvé, Marielle es_ES
dc.contributor.author Serra Alfaro, José Manuel es_ES
dc.contributor.author Roussel, Pascal es_ES
dc.contributor.author Gauthier, Gilles H. es_ES
dc.date.accessioned 2020-11-13T04:32:47Z
dc.date.available 2020-11-13T04:32:47Z
dc.date.issued 2019-09-19 es_ES
dc.identifier.issn 1867-3880 es_ES
dc.identifier.uri http://hdl.handle.net/10251/155008
dc.description This is the peer reviewed version of the following article: S. Vecino-Mantilla, P. Gauthier-Maradei, M. Huvé, J. M. Serra, P. Roussel, G. H. Gauthier, ChemCatChem 2019, 11, 4631, which has been published in final form at https://doi.org/10.1002/cctc.201901002. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving. es_ES
dc.description.abstract [EN] An original way to perform the exsolution of Ni nanoparticles on a ceramic support was explored for the development of methane steam reforming catalyst in SOFC anode conditions. The n=2 Ruddlesden-Popper (RP) phase La1.5Sr1.5Mn1.5Ni0.5O7 +/-delta has been synthesized by the Pechini method and subsequently reduced with an H-2-N-2 mixture at different temperatures and reducing times to induce the formation of two phases: LaSrMnO4 (n=1 RP) decorated with metallic Ni nanoparticles. Preliminary measurements of catalytic behavior for the steam reforming have been carried out in a reduction-reaction process with a mixture of 82 mol %CH4, 18 mol %N-2 and low steam to carbon ratio (S/C=0.15). The catalyst exhibits a selectivity for CO production (0.97), 14.60 mol % CH4 conversion and around 24.19 mol % H-2 production. Such catalytic behavior was maintained for more than 4 h, with a constant rate of hydrogen production and CH4 conversion rate. es_ES
dc.description.sponsorship The authors acknowledge the financial support of the Colombian Administrative Department of Science, Technology and Innovation COLCIENCIAS (Project #110265842833 "Symmetrical high temperature Fuel Cell operating with Colombian natural gas" (contract #038-2015) and S. Vecino-Mantilla's Ph.D. scholarship (call #647)) and of the Spanish National Research Council CSIC (Project #COOPA20112). The authors are also grateful to UIS' X-Ray Laboratory (Parque Tecnologico Guatiguara) for XRD measurements, UPV's Electronic Microscopy Laboratory for the FESEM analysis, and finally to Margarita Vecino-Mantilla, Carolina Cardenas-Velandia, Santiago Paez-Duque, Ivan Suarez-Acelas (UIS), Maria Fabuel (UPV) and Olivier Gardoll (UCCS) for their contribution to materials synthesis and characterization. As well as Santiago Palencia, Monica Sandoval (UIS) and Caroline Pirovano (UCCS) are warmly acknowledged for useful discussions. es_ES
dc.language Inglés es_ES
dc.publisher John Wiley & Sons es_ES
dc.relation.ispartof ChemCatChem es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Exsolution es_ES
dc.subject Fuel cells es_ES
dc.subject Nickel es_ES
dc.subject Ruddlesden-Popper es_ES
dc.subject Steam reforming es_ES
dc.title Nickel exsolution driven phase transformation from an n=2 to an n=1 Ruddlesden Popper manganite for methane steam reforming reaction in SOFC conditions es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1002/cctc.201901002 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/COLCIENCIAS//110265842833/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/COLCIENCIAS//038-2015/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/COLCIENCIAS//647/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/CSIC//COOPA20112/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química es_ES
dc.description.bibliographicCitation Vecino-Mantilla, S.; Gauthier-Maradei, P.; Huvé, M.; Serra Alfaro, JM.; Roussel, P.; Gauthier, GH. (2019). Nickel exsolution driven phase transformation from an n=2 to an n=1 Ruddlesden Popper manganite for methane steam reforming reaction in SOFC conditions. ChemCatChem. 11(18):4631-4641. https://doi.org/10.1002/cctc.201901002 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1002/cctc.201901002 es_ES
dc.description.upvformatpinicio 4631 es_ES
dc.description.upvformatpfin 4641 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 11 es_ES
dc.description.issue 18 es_ES
dc.relation.pasarela S\392220 es_ES
dc.contributor.funder Consejo Superior de Investigaciones Científicas es_ES
dc.contributor.funder Departamento Administrativo de Ciencia, Tecnología e Innovación, Colombia es_ES
dc.description.references Ghezel-Ayagh, H., & Borglum, B. P. (2017). Review of Progress in Solid Oxide Fuel Cells at FuelCell Energy. ECS Transactions, 78(1), 77-86. doi:10.1149/07801.0077ecst es_ES
dc.description.references Park, B. H., & Choi, G. M. (2014). Ex-solution of Ni nanoparticles in a La0.2Sr0.8Ti1−xNixO3−δ alternative anode for solid oxide fuel cell. Solid State Ionics, 262, 345-348. doi:10.1016/j.ssi.2013.10.016 es_ES
dc.description.references Chung, Y. S., Kim, T., Shin, T. H., Yoon, H., Park, S., Sammes, N. M., … Chung, J. S. (2017). In situ preparation of a La1.2Sr0.8Mn0.4Fe0.6O4 Ruddlesden–Popper phase with exsolved Fe nanoparticles as an anode for SOFCs. Journal of Materials Chemistry A, 5(14), 6437-6446. doi:10.1039/c6ta09692a es_ES
dc.description.references Sun, Y., Li, J., Zeng, Y., Amirkhiz, B. S., Wang, M., Behnamian, Y., & Luo, J. (2015). A-site deficient perovskite: the parent for in situ exsolution of highly active, regenerable nano-particles as SOFC anodes. Journal of Materials Chemistry A, 3(20), 11048-11056. doi:10.1039/c5ta01733e es_ES
dc.description.references Hu, Y., Bouffanais, Y., Almar, L., Morata, A., Tarancon, A., & Dezanneau, G. (2013). La2−xSrxCoO4−δ (x = 0.9, 1.0, 1.1) Ruddlesden-Popper-type layered cobaltites as cathode materials for IT-SOFC application. International Journal of Hydrogen Energy, 38(7), 3064-3072. doi:10.1016/j.ijhydene.2012.12.047 es_ES
dc.description.references Li, Y., Zhang, W., Zheng, Y., Chen, J., Yu, B., Chen, Y., & Liu, M. (2017). Controlling cation segregation in perovskite-based electrodes for high electro-catalytic activity and durability. Chemical Society Reviews, 46(20), 6345-6378. doi:10.1039/c7cs00120g es_ES
dc.description.references Kharton, V. ., Yaremchenko, A. ., Shaula, A. ., Patrakeev, M. ., Naumovich, E. ., Logvinovich, D. ., … Marques, F. M. . (2004). Transport properties and stability of Ni-containing mixed conductors with perovskite- and K2NiF4-type structure. Journal of Solid State Chemistry, 177(1), 26-37. doi:10.1016/s0022-4596(03)00261-5 es_ES
dc.description.references Skinner, S. (2000). Oxygen diffusion and surface exchange in La2−xSrxNiO4+δ. Solid State Ionics, 135(1-4), 709-712. doi:10.1016/s0167-2738(00)00388-x es_ES
dc.description.references Balachandran, P. V., Puggioni, D., & Rondinelli, J. M. (2013). Crystal-Chemistry Guidelines for Noncentrosymmetric A2BO4 Ruddlesden−Popper Oxides. Inorganic Chemistry, 53(1), 336-348. doi:10.1021/ic402283c es_ES
dc.description.references Autret, C., Martin, C., Hervieu, M., Retoux, R., Raveau, B., André, G., & Bourée, F. (2004). Structural investigation of Ca2MnO4 by neutron powder diffraction and electron microscopy. Journal of Solid State Chemistry, 177(6), 2044-2052. doi:10.1016/j.jssc.2004.02.012 es_ES
dc.description.references Dailly, J., Fourcade, S., Largeteau, A., Mauvy, F., Grenier, J. C., & Marrony, M. (2010). Perovskite and A2MO4-type oxides as new cathode materials for protonic solid oxide fuel cells. Electrochimica Acta, 55(20), 5847-5853. doi:10.1016/j.electacta.2010.05.034 es_ES
dc.description.references ZHAO, H., MAUVY, F., LALANNE, C., BASSAT, J., FOURCADE, S., & GRENIER, J. (2008). New cathode materials for ITSOFC: Phase stability, oxygen exchange and cathode properties of La2−xNiO4+δ. Solid State Ionics, 179(35-36), 2000-2005. doi:10.1016/j.ssi.2008.06.019 es_ES
dc.description.references Yoo, Y.-S., Choi, M., Hwang, J.-H., Im, H.-N., Singh, B., & Song, S.-J. (2015). La2NiO4+δ as oxygen electrode in reversible solid oxide cells. Ceramics International, 41(5), 6448-6454. doi:10.1016/j.ceramint.2015.01.083 es_ES
dc.description.references Das, A., Xhafa, E., & Nikolla, E. (2016). Electro- and thermal-catalysis by layered, first series Ruddlesden-Popper oxides. Catalysis Today, 277, 214-226. doi:10.1016/j.cattod.2016.07.014 es_ES
dc.description.references Liping, S., Lihua, H., Hui, Z., Qiang, L., & Pijolat, C. (2008). La substituted Sr2MnO4 as a possible cathode material in SOFC. Journal of Power Sources, 179(1), 96-100. doi:10.1016/j.jpowsour.2007.12.090 es_ES
dc.description.references Jin, C., Yang, Z., Zheng, H., Yang, C., & Chen, F. (2012). La0.6Sr1.4MnO4 layered perovskite anode material for intermediate temperature solid oxide fuel cells. Electrochemistry Communications, 14(1), 75-77. doi:10.1016/j.elecom.2011.11.008 es_ES
dc.description.references Sandoval, M. V., Pirovano, C., Capoen, E., Jooris, R., Porcher, F., Roussel, P., & Gauthier, G. H. (2017). In-depth study of the Ruddlesden-Popper LaxSr2−xMnO4±δ family as possible electrode materials for symmetrical SOFC. International Journal of Hydrogen Energy, 42(34), 21930-21943. doi:10.1016/j.ijhydene.2017.07.062 es_ES
dc.description.references Li-Ping, S., Qiang, L., Li-Hua, H., Hui, Z., Guo-Ying, Z., Nan, L., … Pijolat, C. (2011). Synthesis and performance of Sr1.5LaxMnO4 as cathode materials for intermediate temperature solid oxide fuel cell. Journal of Power Sources, 196(14), 5835-5839. doi:10.1016/j.jpowsour.2011.03.016 es_ES
dc.description.references Shen, J., Yang, G., Zhang, Z., Zhou, W., Wang, W., & Shao, Z. (2016). Tuning layer-structured La0.6Sr1.4MnO4+δ into a promising electrode for intermediate-temperature symmetrical solid oxide fuel cells through surface modification. Journal of Materials Chemistry A, 4(27), 10641-10649. doi:10.1039/c6ta02986h es_ES
dc.description.references Thommy, L., Joubert, O., Hamon, J., & Caldes, M.-T. (2016). Impregnation versus exsolution: Using metal catalysts to improve electrocatalytic properties of LSCM-based anodes operating at 600 °C. International Journal of Hydrogen Energy, 41(32), 14207-14216. doi:10.1016/j.ijhydene.2016.06.088 es_ES
dc.description.references Irvine, J. T. S., Neagu, D., Verbraeken, M. C., Chatzichristodoulou, C., Graves, C., & Mogensen, M. B. (2016). Evolution of the electrochemical interface in high-temperature fuel cells and electrolysers. Nature Energy, 1(1). doi:10.1038/nenergy.2015.14 es_ES
dc.description.references Zhou, J., Shin, T.-H., Ni, C., Chen, G., Wu, K., Cheng, Y., & Irvine, J. T. S. (2016). In Situ Growth of Nanoparticles in Layered Perovskite La0.8Sr1.2Fe0.9Co0.1O4−δ as an Active and Stable Electrode for Symmetrical Solid Oxide Fuel Cells. Chemistry of Materials, 28(9), 2981-2993. doi:10.1021/acs.chemmater.6b00071 es_ES
dc.description.references Hua, B., Li, M., Sun, Y.-F., Li, J.-H., & Luo, J.-L. (2017). Enhancing Perovskite Electrocatalysis of Solid Oxide Cells Through Controlled Exsolution of Nanoparticles. ChemSusChem, 10(17), 3333-3341. doi:10.1002/cssc.201700936 es_ES
dc.description.references Yang, C., Li, J., Lin, Y., Liu, J., Chen, F., & Liu, M. (2015). In situ fabrication of CoFe alloy nanoparticles structured (Pr0.4Sr0.6)3(Fe0.85Nb0.15)2O7 ceramic anode for direct hydrocarbon solid oxide fuel cells. Nano Energy, 11, 704-710. doi:10.1016/j.nanoen.2014.12.001 es_ES
dc.description.references Zhang, W., & Zheng, W. (2014). Exsolution-Mimic Heterogeneous Surfaces: Towards Unlimited Catalyst Design. ChemCatChem, 7(1), 48-50. doi:10.1002/cctc.201402757 es_ES
dc.description.references Liu, S., Zhang, W., Deng, T., Wang, D., Wang, X., Zhang, X., … Zheng, W. (2017). Mechanistic Origin of Enhanced CO Catalytic Oxidation over Co3 O4 /LaCoO3 at Lower Temperature. ChemCatChem, 9(16), 3102-3106. doi:10.1002/cctc.201700937 es_ES
dc.description.references Arrivé, C., Delahaye, T., Joubert, O., & Gauthier, G. (2013). Exsolution of nickel nanoparticles at the surface of a conducting titanate as potential hydrogen electrode material for solid oxide electrochemical cells. Journal of Power Sources, 223, 341-348. doi:10.1016/j.jpowsour.2012.09.062 es_ES
dc.description.references Gao, Y., Chen, D., Saccoccio, M., Lu, Z., & Ciucci, F. (2016). From material design to mechanism study: Nanoscale Ni exsolution on a highly active A-site deficient anode material for solid oxide fuel cells. Nano Energy, 27, 499-508. doi:10.1016/j.nanoen.2016.07.013 es_ES
dc.description.references Sun, Y.-F., Zhang, Y.-Q., Chen, J., Li, J.-H., Zhu, Y.-T., Zeng, Y.-M., … Luo, J.-L. (2016). New Opportunity for in Situ Exsolution of Metallic Nanoparticles on Perovskite Parent. Nano Letters, 16(8), 5303-5309. doi:10.1021/acs.nanolett.6b02757 es_ES
dc.description.references Ouellette, R. J., & Rawn, J. D. (2014). Organometallic Chemistry of Transition Metal Elements and Introduction to Retrosynthesis. Organic Chemistry, 567-593. doi:10.1016/b978-0-12-800780-8.00017-6 es_ES
dc.description.references Yaremchenko, A. A., Bannikov, D. O., Kovalevsky, A. V., Cherepanov, V. A., & Kharton, V. V. (2008). High-temperature transport properties, thermal expansion and cathodic performance of Ni-substituted LaSr2Mn2O7−δ. Journal of Solid State Chemistry, 181(11), 3024-3032. doi:10.1016/j.jssc.2008.07.038 es_ES
dc.description.references Chupakhina, T. I., Bazuev, G. V., & Zabolotskaya, E. V. (2010). Synthesis and magnetic properties of a new layered oxide La1.5Sr1.5Mn1.25Ni0.75O6.67. Russian Journal of Inorganic Chemistry, 55(2), 247-253. doi:10.1134/s0036023610020178 es_ES
dc.description.references Jardiel, T., Caldes, M. T., Moser, F., Hamon, J., Gauthier, G., & Joubert, O. (2010). New SOFC electrode materials: The Ni-substituted LSCM-based compounds (La0.75Sr0.25)(Cr0.5Mn0.5−xNix)O3−δ and (La0.75Sr0.25)(Cr0.5−xNixMn0.5)O3−δ. Solid State Ionics, 181(19-20), 894-901. doi:10.1016/j.ssi.2010.05.012 es_ES
dc.description.references Svoboda, K., Siewiorek, A., Baxter, D., Rogut, J., & Pohořelý, M. (2008). Thermodynamic possibilities and constraints for pure hydrogen production by a nickel and cobalt-based chemical looping process at lower temperatures. Energy Conversion and Management, 49(2), 221-231. doi:10.1016/j.enconman.2007.06.036 es_ES
dc.description.references Bhardwaj, A., Kaur, J., Wuest, M., & Wuest, F. (2017). In situ click chemistry generation of cyclooxygenase-2 inhibitors. Nature Communications, 8(1). doi:10.1038/s41467-016-0009-6 es_ES
dc.description.references Zhu, J., Li, H., Zhong, L., Xiao, P., Xu, X., Yang, X., … Li, J. (2014). Perovskite Oxides: Preparation, Characterizations, and Applications in Heterogeneous Catalysis. ACS Catalysis, 4(9), 2917-2940. doi:10.1021/cs500606g es_ES
dc.description.references Broux, T., Prestipino, C., Bahout, M., Hernandez, O., Swain, D., Paofai, S., … Greaves, C. (2013). Unprecedented High Solubility of Oxygen Interstitial Defects in La1.2Sr0.8MnO4+δ up to δ ∼ 0.42 Revealed by In Situ High Temperature Neutron Powder Diffraction in Flowing O2. Chemistry of Materials, 25(20), 4053-4063. doi:10.1021/cm402194q es_ES
dc.description.references MUNNINGS, C., SKINNER, S., AMOW, G., WHITFIELD, P., & DAVIDSON, I. (2006). Structure, stability and electrical properties of the La(2−x)SrxMnO4±δ solid solution series. Solid State Ionics, 177(19-25), 1849-1853. doi:10.1016/j.ssi.2006.01.009 es_ES
dc.description.references Li, R. K., & Greaves, C. (2000). Synthesis and Characterization of the Electron-Doped Single-Layer Manganite La1.2Sr0.8MnO4−δ and Its Oxidized Phase La1.2Sr0.8MnO4+δ. Journal of Solid State Chemistry, 153(1), 34-40. doi:10.1006/jssc.2000.8735 es_ES
dc.description.references Wang, Y., Shih, K., & Jiang, X. (2012). Phase transformation during the sintering of γ-alumina and the simulated Ni-laden waste sludge. Ceramics International, 38(3), 1879-1886. doi:10.1016/j.ceramint.2011.10.015 es_ES
dc.description.references Senff, D., Reutler, P., Braden, M., Friedt, O., Bruns, D., Cousson, A., … Revcolevschi, A. (2005). Crystal and magnetic structure ofLa1−xSr1+xMnO4: Role of the orbital degree of freedom. Physical Review B, 71(2). doi:10.1103/physrevb.71.024425 es_ES
dc.description.references Larochelle, S., Mehta, A., Lu, L., Mang, P. K., Vajk, O. P., Kaneko, N., … Greven, M. (2005). Structural and magnetic properties of the single-layer manganese oxideLa1−xSr1+xMnO4. Physical Review B, 71(2). doi:10.1103/physrevb.71.024435 es_ES
dc.description.references Bieringer, M., & Greedan, J. E. (2002). Structure and magnetism in BaLaMnO4 +/– δ (δ = 0.00, 0.10) and BaxSr1 – xLaMnO4. Disappearance of magnetic order for x > 0.30. Journal of Materials Chemistry, 12(2), 279-287. doi:10.1039/b104405m es_ES
dc.description.references Kitchen, H. J., Saratovsky, I., & Hayward, M. A. (2010). Topotactic reduction as a synthetic route for the preparation of low-dimensional Mn(II) oxide phases: The structure and magnetism of LaAMnO4-x (A = Sr, Ba). Dalton Transactions, 39(26), 6098. doi:10.1039/b923966a es_ES
dc.description.references Bandyopadhyay, J., & Gupta, K. P. (1977). Low temperature lattice parameter of nickel and some nickel-cobalt alloys and Grüneisen parameter of nickel. Cryogenics, 17(6), 345-347. doi:10.1016/0011-2275(77)90130-8 es_ES
dc.description.references Lai, K.-Y., & Manthiram, A. (2018). Evolution of Exsolved Nanoparticles on a Perovskite Oxide Surface during a Redox Process. Chemistry of Materials, 30(8), 2838-2847. doi:10.1021/acs.chemmater.8b01029 es_ES
dc.description.references Blasse, G. (1965). New compositions with K2NiF4 structure. Journal of Inorganic and Nuclear Chemistry, 27(12), 2683-2684. doi:10.1016/0022-1902(65)80178-6 es_ES
dc.description.references Moritomo, Y., Tomioka, Y., Asamitsu, A., Tokura, Y., & Matsui, Y. (1995). Magnetic and electronic properties in hole-doped manganese oxides with layered structures:La1−xSr1+xMnO4. Physical Review B, 51(5), 3297-3300. doi:10.1103/physrevb.51.3297 es_ES
dc.description.references Ganguly, P., & Rao, C. N. R. (1984). Crystal chemistry and magnetic properties of layered metal oxides possessing the K2NiF4 or related structures. Journal of Solid State Chemistry, 53(2), 193-216. doi:10.1016/0022-4596(84)90094-x es_ES
dc.description.references Benabad, A., Daoudi, A., Salmon, R., & Le Flem, G. (1977). Les phases SrLnMnO4 (Ln = La, Nd, Sm, Gd), BaLnMnO4 (Ln = La, Nd) et M1+xLa1−xMnO4 (M = Sr, Ba). Journal of Solid State Chemistry, 22(2), 121-126. doi:10.1016/0022-4596(77)90028-7 es_ES
dc.description.references Wu, W. B., Huang, D. J., Guo, G. Y., Lin, H.-J., Hou, T. Y., Chang, C. F., … Jo, T. (2004). Orbital polarization of LaSrMnO4 studied by soft X-ray linear dichroism. Journal of Electron Spectroscopy and Related Phenomena, 137-140, 641-645. doi:10.1016/j.elspec.2004.02.072 es_ES
dc.description.references GONZALEZDELACRUZ, V., HOLGADO, J., PERENIGUEZ, R., & CABALLERO, A. (2008). Morphology changes induced by strong metal–support interaction on a Ni–ceria catalytic system. Journal of Catalysis, 257(2), 307-314. doi:10.1016/j.jcat.2008.05.009 es_ES
dc.description.references Dulub, O., Hebenstreit, W., & Diebold, U. (2000). Imaging Cluster Surfaces with Atomic Resolution: The Strong Metal-Support Interaction State of Pt Supported onTiO2(110). Physical Review Letters, 84(16), 3646-3649. doi:10.1103/physrevlett.84.3646 es_ES
dc.description.references Wei, T., Jia, L., Zheng, H., Chi, B., Pu, J., & Li, J. (2018). LaMnO3-based perovskite with in-situ exsolved Ni nanoparticles: a highly active, performance stable and coking resistant catalyst for CO2 dry reforming of CH4. Applied Catalysis A: General, 564, 199-207. doi:10.1016/j.apcata.2018.07.031 es_ES
dc.description.references A. Adamson A. Gat Physical Chemistry of Surfaces John Wiley & Sons Inc. New York 1997. es_ES
dc.description.references Oh, T.-S., Rahani, E. K., Neagu, D., Irvine, J. T. S., Shenoy, V. B., Gorte, R. J., & Vohs, J. M. (2015). Evidence and Model for Strain-Driven Release of Metal Nanocatalysts from Perovskites during Exsolution. The Journal of Physical Chemistry Letters, 6(24), 5106-5110. doi:10.1021/acs.jpclett.5b02292 es_ES
dc.description.references Blander, M., & Katz, J. L. (1975). Bubble nucleation in liquids. AIChE Journal, 21(5), 833-848. doi:10.1002/aic.690210502 es_ES
dc.description.references Kelchner, C. L., Plimpton, S. J., & Hamilton, J. C. (1998). Dislocation nucleation and defect structure during surface indentation. Physical Review B, 58(17), 11085-11088. doi:10.1103/physrevb.58.11085 es_ES
dc.description.references Neagu, D., Tsekouras, G., Miller, D. N., Ménard, H., & Irvine, J. T. S. (2013). In situ growth of nanoparticles through control of non-stoichiometry. Nature Chemistry, 5(11), 916-923. doi:10.1038/nchem.1773 es_ES
dc.description.references Raabe, O. G. (1971). Particle size analysis utilizing grouped data and the log-normal distribution. Journal of Aerosol Science, 2(3), 289-303. doi:10.1016/0021-8502(71)90054-1 es_ES
dc.description.references Pauw, B. R., Kästner, C., & Thünemann, A. F. (2017). Nanoparticle size distribution quantification: results of a small-angle X-ray scattering inter-laboratory comparison. Journal of Applied Crystallography, 50(5), 1280-1288. doi:10.1107/s160057671701010x es_ES
dc.description.references Neagu, D., Oh, T.-S., Miller, D. N., Ménard, H., Bukhari, S. M., Gamble, S. R., … Irvine, J. T. S. (2015). Nano-socketed nickel particles with enhanced coking resistance grown in situ by redox exsolution. Nature Communications, 6(1). doi:10.1038/ncomms9120 es_ES
dc.description.references Hansen, T. W., DeLaRiva, A. T., Challa, S. R., & Datye, A. K. (2013). Sintering of Catalytic Nanoparticles: Particle Migration or Ostwald Ripening? Accounts of Chemical Research, 46(8), 1720-1730. doi:10.1021/ar3002427 es_ES
dc.description.references Lif, J., Skoglundh, M., & Löwendahl, L. (2002). Sintering of nickel particles supported on γ-alumina in ammonia. Applied Catalysis A: General, 228(1-2), 145-154. doi:10.1016/s0926-860x(01)00957-7 es_ES
dc.description.references Agüero, F. N., Beltrán, A. M., Fernández, M. A., & Cadús, L. E. (2019). Surface nickel particles generated by exsolution from a perovskite structure. Journal of Solid State Chemistry, 273, 75-80. doi:10.1016/j.jssc.2019.02.036 es_ES
dc.description.references Asoro, M. A., Ferreira, P. J., & Kovar, D. (2014). In situ transmission electron microscopy and scanning transmission electron microscopy studies of sintering of Ag and Pt nanoparticles. Acta Materialia, 81, 173-183. doi:10.1016/j.actamat.2014.08.028 es_ES
dc.description.references Girona, K., Sailler, S., Gélin, P., Bailly, N., Georges, S., & Bultel, Y. (2014). Modelling of gradual internal reforming process over Ni-YSZ SOFC anode with a catalytic layer. The Canadian Journal of Chemical Engineering, 93(2), 285-296. doi:10.1002/cjce.22113 es_ES
dc.description.references W. K. B. W. Ramli Exsolved Base Metal Catalyst Systems with Anchored Nanoparticles for Carbon Monoxide (CO) and Nitric Oxides (NO Oxidation Newcastle University 2017. es_ES
dc.description.references Sadykov, V., Mezentseva, N., Alikina, G., Bunina, R., Pelipenko, V., Lukashevich, A., … Rietveld, B. (2009). Nanocomposite catalysts for internal steam reforming of methane and biofuels in solid oxide fuel cells: Design and performance. Catalysis Today, 146(1-2), 132-140. doi:10.1016/j.cattod.2009.02.035 es_ES
dc.description.references Atkinson, A., Barnett, S., Gorte, R. J., Irvine, J. T. S., McEvoy, A. J., Mogensen, M., … Vohs, J. (2004). Advanced anodes for high-temperature fuel cells. Nature Materials, 3(1), 17-27. doi:10.1038/nmat1040 es_ES
dc.description.references Dicks, A. . (1998). Advances in catalysts for internal reforming in high temperature fuel cells. Journal of Power Sources, 71(1-2), 111-122. doi:10.1016/s0378-7753(97)02753-5 es_ES
dc.description.references Roy, P. S., Park, N.-K., & Kim, K. (2014). Metal foam-supported Pd–Rh catalyst for steam methane reforming and its application to SOFC fuel processing. International Journal of Hydrogen Energy, 39(9), 4299-4310. doi:10.1016/j.ijhydene.2014.01.004 es_ES
dc.description.references Postole, G., Bosselet, F., Bergeret, G., Prakash, S., & Gélin, P. (2014). On the promoting effect of H2S on the catalytic H2 production over Gd-doped ceria from CH4/H2O mixtures for solid oxide fuel cell applications. Journal of Catalysis, 316, 149-163. doi:10.1016/j.jcat.2014.05.011 es_ES
dc.description.references Cheah, S. K., Massin, L., Aouine, M., Steil, M. C., Fouletier, J., & Gélin, P. (2018). Methane steam reforming in water deficient conditions on Ir/Ce0.9Gd0.1O2-x catalyst: Metal-support interactions and catalytic activity enhancement. Applied Catalysis B: Environmental, 234, 279-289. doi:10.1016/j.apcatb.2018.04.048 es_ES
dc.description.references Bartholomew, C. H. (1982). Carbon Deposition in Steam Reforming and Methanation. Catalysis Reviews, 24(1), 67-112. doi:10.1080/03602458208079650 es_ES
dc.description.references M. P. Pechini Method of Preparing Lead and Alkaline Earth Titanates and Niobates and Coating Method Using the Same to Form a Capacitor 1967 US3330697 A. es_ES
dc.description.references Petříček, V., Dušek, M., & Palatinus, L. (2014). Crystallographic Computing System JANA2006: General features. Zeitschrift für Kristallographie - Crystalline Materials, 229(5). doi:10.1515/zkri-2014-1737 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem