- -

Potential of VIS-NIR hyperspectral imaging and chemometric methods to identify similar cultivars of nectarine

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Potential of VIS-NIR hyperspectral imaging and chemometric methods to identify similar cultivars of nectarine

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Munera-Picazo, S. es_ES
dc.contributor.author Amigo,Jose Manuel es_ES
dc.contributor.author Aleixos Borrás, María Nuria es_ES
dc.contributor.author Talens Oliag, Pau es_ES
dc.contributor.author Cubero-García, Sergio es_ES
dc.contributor.author BLASCO IVARS, JOSE es_ES
dc.date.accessioned 2020-11-13T04:33:19Z
dc.date.available 2020-11-13T04:33:19Z
dc.date.issued 2018-04 es_ES
dc.identifier.issn 0956-7135 es_ES
dc.identifier.uri http://hdl.handle.net/10251/155019
dc.description.abstract [EN] Product inspection is essential to ensure good quality and to avoid fraud. New nectarine cultivars with similar external appearance but different physicochemical properties may be mixed in the market, causing confusion and rejection among consumers, and consequently affecting sales and prices. Hyperspectral reflectance imaging in the range of 450¿1040 nm was studied as a non-destructive method to differentiate two cultivars of nectarines with a very similar appearance but different taste. Partial least squares discriminant analysis (PLS-DA) was used to develop a prediction model to distinguish intact fruits of the cultivars using pixel-wise and mean spectrum approaches, and then the model was projected onto the complete surface of fruits allowing visual inspection. The results indicated that mean spectrum of the fruit was the most accurate method, a correct discrimination rate of 94% being achieved. Wavelength selection reduced the dimensionality of the hyperspectral images using the regression coefficients of the PLS-DA model. An accuracy of 96% was obtained by using 14 optimal wavelengths, whereas colour imaging and a trained inspection panel achieved a rate of correct classification of only 57% of the fruits. es_ES
dc.description.sponsorship This work was partially funded by INIA and FEDER funds through project RTA2015-00078-00-00. Sandra Munera thanks INIA for the FPI-INIA grant num. 43 (CPR2014-0082), partially supported by European Union FSE funds. The authors wish to thank Fruits de Ponent (Lleida) for providing the fruit. es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Food Control es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Stone fruit es_ES
dc.subject Quality control es_ES
dc.subject Cultivar discrimination es_ES
dc.subject Non-destructive es_ES
dc.subject PLS-DA es_ES
dc.subject Colour analysis es_ES
dc.subject Hyperspectral image es_ES
dc.subject.classification TECNOLOGIA DE ALIMENTOS es_ES
dc.subject.classification EXPRESION GRAFICA EN LA INGENIERIA es_ES
dc.title Potential of VIS-NIR hyperspectral imaging and chemometric methods to identify similar cultivars of nectarine es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.foodcont.2017.10.037 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//RTA2015-00078-00-00/ES/Sistemas no destructivos para la determinación automática de la calidad interna de frutas en línea utilizando métodos ópticos e información espectral/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/INIA//CPR2014-0082/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Tecnología de Alimentos - Departament de Tecnologia d'Aliments es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Gráfica - Departament d'Enginyeria Gràfica es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Mecanización y Tecnología Agraria - Departament de Mecanització i Tecnologia Agrària es_ES
dc.description.bibliographicCitation Munera-Picazo, S.; Amigo, JM.; Aleixos Borrás, MN.; Talens Oliag, P.; Cubero-García, S.; Blasco Ivars, J. (2018). Potential of VIS-NIR hyperspectral imaging and chemometric methods to identify similar cultivars of nectarine. Food Control. 86:1-10. https://doi.org/10.1016/j.foodcont.2017.10.037 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.foodcont.2017.10.037 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 10 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 86 es_ES
dc.relation.pasarela S\355923 es_ES
dc.contributor.funder Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria es_ES
dc.contributor.funder European Commission es_ES
dc.contributor.funder Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem