Mostrar el registro sencillo del ítem
dc.contributor.author | Arellano, Luis M. | es_ES |
dc.contributor.author | Yue, Sun | es_ES |
dc.contributor.author | Atienzar Corvillo, Pedro Enrique | es_ES |
dc.contributor.author | Gómez-Escalonilla, Maria J. | es_ES |
dc.contributor.author | Ortega Higueruelo, Francisco J. | es_ES |
dc.contributor.author | Fierro, José Luis G. | es_ES |
dc.contributor.author | García Gómez, Hermenegildo | es_ES |
dc.contributor.author | Langa, Fernando | es_ES |
dc.date.accessioned | 2020-11-13T04:33:27Z | |
dc.date.available | 2020-11-13T04:33:27Z | |
dc.date.issued | 2019-08-28 | es_ES |
dc.identifier.issn | 1359-7345 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/155021 | |
dc.description.abstract | [EN] Covalent B-functionalization of B-doped graphene has been performed for the first time. The electronic properties and Hall effect of functionalized N- and B-doped graphene can be tuned by tailoring the electron-donating/-withdrawing properties of the organic addend. | es_ES |
dc.description.sponsorship | The authors appreciate support from the Ministerio de Economia y Competitividad (MINECO) of Spain (projects CTQ2015-69153-CO2-1, CTQ2016-79189-R and MAT2015-69669-P) and the Junta de Comunidades de Castilla-La Mancha (project SBPLY/17/180501/000254). L. M. A. thanks MINECO (CTQ2016-79189-R) for a doctoral FPI grant. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | The Royal Society of Chemistry | es_ES |
dc.relation.ispartof | Chemical Communications | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject.classification | QUIMICA ORGANICA | es_ES |
dc.title | Modulating charge carrier density and mobility in doped graphene by covalent functionalization | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1039/c9cc04571f | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//CTQ2015-69153-C2-1-R/ES/EXPLOTANDO EL USO DEL GRAFENO EN CATALISIS. USO DEL GRAFENO COMO CARBOCATALIZADOR O COMO SOPORTE/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//MAT2015-69669-P/ES/OPTOLECTRONICA EN NANOCAVIDADES DE ALTO INDICE DE REFRACCION. DEL SILICIO A LA PEROVSKITA/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//CTQ2016-79189-R/ES/MATERIALES ORGANICOS PARA CELULAS SOLARES ORGANICAS Y ELECTRONICA MOLECULAR. SINTESIS, ESTUDIOS ESPECTROSCOPICOS Y APLICACION EN DISPOSITIVOS SOLARES/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/JCCM//SBPLY%2F17%2F180501%2F000254/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto de Reconocimiento Molecular y Desarrollo Tecnológico - Institut de Reconeixement Molecular i Desenvolupament Tecnològic | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Química - Departament de Química | es_ES |
dc.description.bibliographicCitation | Arellano, LM.; Yue, S.; Atienzar Corvillo, PE.; Gómez-Escalonilla, MJ.; Ortega Higueruelo, FJ.; Fierro, JLG.; García Gómez, H.... (2019). Modulating charge carrier density and mobility in doped graphene by covalent functionalization. Chemical Communications. 55(67):9999-10002. https://doi.org/10.1039/c9cc04571f | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1039/c9cc04571f | es_ES |
dc.description.upvformatpinicio | 9999 | es_ES |
dc.description.upvformatpfin | 10002 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 55 | es_ES |
dc.description.issue | 67 | es_ES |
dc.relation.pasarela | S\407288 | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.contributor.funder | Junta de Comunidades de Castilla-La Mancha | es_ES |
dc.description.references | Wang, X., Sun, G., Routh, P., Kim, D.-H., Huang, W., & Chen, P. (2014). Heteroatom-doped graphene materials: syntheses, properties and applications. Chem. Soc. Rev., 43(20), 7067-7098. doi:10.1039/c4cs00141a | es_ES |
dc.description.references | Lavorato, C., Primo, A., Molinari, R., & Garcia, H. (2013). N-Doped Graphene Derived from Biomass as a Visible-Light Photocatalyst for Hydrogen Generation from Water/Methanol Mixtures. Chemistry - A European Journal, 20(1), 187-194. doi:10.1002/chem.201303689 | es_ES |
dc.description.references | Latorre-Sánchez, M., Primo, A., & García, H. (2013). P-Doped Graphene Obtained by Pyrolysis of Modified Alginate as a Photocatalyst for Hydrogen Generation from Water-Methanol Mixtures. Angewandte Chemie International Edition, 52(45), 11813-11816. doi:10.1002/anie.201304505 | es_ES |
dc.description.references | Duan, J., Chen, S., Jaroniec, M., & Qiao, S. Z. (2015). Heteroatom-Doped Graphene-Based Materials for Energy-Relevant Electrocatalytic Processes. ACS Catalysis, 5(9), 5207-5234. doi:10.1021/acscatal.5b00991 | es_ES |
dc.description.references | Putri, L. K., Ong, W.-J., Chang, W. S., & Chai, S.-P. (2015). Heteroatom doped graphene in photocatalysis: A review. Applied Surface Science, 358, 2-14. doi:10.1016/j.apsusc.2015.08.177 | es_ES |
dc.description.references | Niu, L., Li, Z., Hong, W., Sun, J., Wang, Z., Ma, L., … Yang, S. (2013). Pyrolytic synthesis of boron-doped graphene and its application as electrode material for supercapacitors. Electrochimica Acta, 108, 666-673. doi:10.1016/j.electacta.2013.07.025 | es_ES |
dc.description.references | Sahoo, M., Sreena, K. P., Vinayan, B. P., & Ramaprabhu, S. (2015). Green synthesis of boron doped graphene and its application as high performance anode material in Li ion battery. Materials Research Bulletin, 61, 383-390. doi:10.1016/j.materresbull.2014.10.049 | es_ES |
dc.description.references | Khai, T. V., Na, H. G., Kwak, D. S., Kwon, Y. J., Ham, H., Shim, K. B., & Kim, H. W. (2012). Comparison study of structural and optical properties of boron-doped and undoped graphene oxide films. Chemical Engineering Journal, 211-212, 369-377. doi:10.1016/j.cej.2012.09.081 | es_ES |
dc.description.references | Osumi, S., Saito, S., Dou, C., Matsuo, K., Kume, K., Yoshikawa, H., … Yamaguchi, S. (2016). Boron-doped nanographene: Lewis acidity, redox properties, and battery electrode performance. Chemical Science, 7(1), 219-227. doi:10.1039/c5sc02246k | es_ES |
dc.description.references | Xu, Q., Jiang, X., Zhu, W., Chen, C., Hu, G., & Li, Q. (2016). Synthesis, preliminary biological evaluation and 3D-QSAR study of novel 1,5-disubstituted-2(1H)-pyridone derivatives as potential anti-lung cancer agents. Arabian Journal of Chemistry, 9(5), 721-735. doi:10.1016/j.arabjc.2015.08.001 | es_ES |
dc.description.references | Pimenta, M. A., Dresselhaus, G., Dresselhaus, M. S., Cançado, L. G., Jorio, A., & Saito, R. (2007). Studying disorder in graphite-based systems by Raman spectroscopy. Phys. Chem. Chem. Phys., 9(11), 1276-1290. doi:10.1039/b613962k | es_ES |
dc.description.references | Voggu, R., Rout, C. S., Franklin, A. D., Fisher, T. S., & Rao, C. N. R. (2008). Extraordinary Sensitivity of the Electronic Structure and Properties of Single-Walled Carbon Nanotubes to Molecular Charge-Transfer. The Journal of Physical Chemistry C, 112(34), 13053-13056. doi:10.1021/jp805136e | es_ES |
dc.description.references | Biswal, M., Zhang, X., Schilter, D., Lee, T. K., Hwang, D. Y., Saxena, M., … Ruoff, R. S. (2017). Sodide and Organic Halides Effect Covalent Functionalization of Single-Layer and Bilayer Graphene. Journal of the American Chemical Society, 139(11), 4202-4210. doi:10.1021/jacs.7b00932 | es_ES |
dc.description.references | Vizuete, M., Gómez-Escalonilla, M. J., Fierro, J. L. G., Ohkubo, K., Fukuzumi, S., Yudasaka, M., … Langa, F. (2014). Photoinduced electron transfer in a carbon nanohorn–C60 conjugate. Chemical Science, 5(5), 2072. doi:10.1039/c3sc53342e | es_ES |
dc.description.references | Allongue, P., Delamar, M., Desbat, B., Fagebaume, O., Hitmi, R., Pinson, J., & Savéant, J.-M. (1997). Covalent Modification of Carbon Surfaces by Aryl Radicals Generated from the Electrochemical Reduction of Diazonium Salts. Journal of the American Chemical Society, 119(1), 201-207. doi:10.1021/ja963354s | es_ES |
dc.description.references | Barrejón, M., Gómez-Escalonilla, M. J., Fierro, J. L. G., Prieto, P., Carrillo, J. R., Rodríguez, A. M., … Langa, F. (2016). Modulation of the exfoliated graphene work function through cycloaddition of nitrile imines. Physical Chemistry Chemical Physics, 18(42), 29582-29590. doi:10.1039/c6cp05285a | es_ES |
dc.description.references | Barrejón, M., Primo, A., Gómez-Escalonilla, M. J., Fierro, J. L. G., García, H., & Langa, F. (2015). Covalent functionalization of N-doped graphene by N-alkylation. Chemical Communications, 51(95), 16916-16919. doi:10.1039/c5cc06285c | es_ES |
dc.description.references | Su, C.-Y., Xu, Y., Zhang, W., Zhao, J., Tang, X., Tsai, C.-H., & Li, L.-J. (2009). Electrical and Spectroscopic Characterizations of Ultra-Large Reduced Graphene Oxide Monolayers. Chemistry of Materials, 21(23), 5674-5680. doi:10.1021/cm902182y | es_ES |