- -

Synthesis of 2D and 3D MOFs with tuneable Lewis acidity from preformed 1D hybrid sub-domains

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Synthesis of 2D and 3D MOFs with tuneable Lewis acidity from preformed 1D hybrid sub-domains

Mostrar el registro completo del ítem

Moreno-Rodríguez, JM.; Velty, A.; Díaz Morales, UM.; Corma Canós, A. (2019). Synthesis of 2D and 3D MOFs with tuneable Lewis acidity from preformed 1D hybrid sub-domains. Chemical Science. 10(7):2053-2066. https://doi.org/10.1039/c8sc04372h

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/155120

Ficheros en el ítem

Metadatos del ítem

Título: Synthesis of 2D and 3D MOFs with tuneable Lewis acidity from preformed 1D hybrid sub-domains
Autor: Moreno-Rodríguez, José María Velty, Alexandra DÍAZ MORALES, URBANO MANUEL Corma Canós, Avelino
Entidad UPV: Universitat Politècnica de València. Departamento de Química - Departament de Química
Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química
Fecha difusión:
Resumen:
[EN] Novel MOF-type materials with different morphologies based on assembled 1D organic-inorganic subdomains were prepared using specific monodentate benzylcarboxylate spacers with functional substituents in the para-position ...[+]
Derechos de uso: Reconocimiento - No comercial (by-nc)
Fuente:
Chemical Science. (issn: 2041-6520 )
DOI: 10.1039/c8sc04372h
Editorial:
The Royal Society of Chemistry
Versión del editor: https://doi.org/10.1039/c8sc04372h
Código del Proyecto:
info:eu-repo/grantAgreement/EC/H2020/720783/EU/MULTI-site organic-inorganic HYbrid CATalysts for MULTI-step chemical processes/
info:eu-repo/grantAgreement/MINECO//MAT2014-52085-C2-1-P/ES/NUEVOS MATERIALES CON DIFERENTES CENTROS ACTIVOS INCORPORADOS EN POSICIONES ESPECIFICAS DE LA RED Y SU APLICACION PARA PROCESOS CATALITICOS MULTI-ETAPA Y NANOTECNOLOGICOS/
info:eu-repo/grantAgreement/MINECO//SEV-2016-0683/
info:eu-repo/grantAgreement/EC/H2020/671093/EU/MATching zeolite SYNthesis with CATalytic activity/
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/MAT2017-82288-C2-1-P/ES/MATERIALES HIBRIDOS MULTIFUNCIONALES BASADOS EN NANO-UNIDADES ESTRUCTURALES ACTIVAS/
Agradecimientos:
The authors are grateful for financial support from the Spanish Government by MAT2014-52085-C2-1-P, MAT2017-82288-C2-1-P and Severo Ochoa Excellence Program SEV-2016-0683. J. M. M. acknowledges Predoctoral Fellowships from ...[+]
Tipo: Artículo

References

Furukawa, H., Cordova, K. E., O’Keeffe, M., & Yaghi, O. M. (2013). The Chemistry and Applications of Metal-Organic Frameworks. Science, 341(6149), 1230444. doi:10.1126/science.1230444

Corma, A., García, H., & Llabrés i Xamena, F. X. (2010). Engineering Metal Organic Frameworks for Heterogeneous Catalysis. Chemical Reviews, 110(8), 4606-4655. doi:10.1021/cr9003924

Horcajada, P., Serre, C., Vallet-Regí, M., Sebban, M., Taulelle, F., & Férey, G. (2006). Metal–Organic Frameworks as Efficient Materials for Drug Delivery. Angewandte Chemie, 118(36), 6120-6124. doi:10.1002/ange.200601878 [+]
Furukawa, H., Cordova, K. E., O’Keeffe, M., & Yaghi, O. M. (2013). The Chemistry and Applications of Metal-Organic Frameworks. Science, 341(6149), 1230444. doi:10.1126/science.1230444

Corma, A., García, H., & Llabrés i Xamena, F. X. (2010). Engineering Metal Organic Frameworks for Heterogeneous Catalysis. Chemical Reviews, 110(8), 4606-4655. doi:10.1021/cr9003924

Horcajada, P., Serre, C., Vallet-Regí, M., Sebban, M., Taulelle, F., & Férey, G. (2006). Metal–Organic Frameworks as Efficient Materials for Drug Delivery. Angewandte Chemie, 118(36), 6120-6124. doi:10.1002/ange.200601878

Lin, R., Liu, S., Ye, J., Li, X., & Zhang, J. (2016). Photoluminescent Metal–Organic Frameworks for Gas Sensing. Advanced Science, 3(7), 1500434. doi:10.1002/advs.201500434

Reale, E., Leyva, A., Corma, A., Martínez, C., García, H., & Rey, F. (2005). A fluoride-catalyzed sol–gel route to catalytically active non-ordered mesoporous silica materials in the absence of surfactants. Journal of Materials Chemistry, 15(17), 1742. doi:10.1039/b415066j

Díaz, U., & Corma, A. (2016). Ordered covalent organic frameworks, COFs and PAFs. From preparation to application. Coordination Chemistry Reviews, 311, 85-124. doi:10.1016/j.ccr.2015.12.010

Loiseau, T., Serre, C., Huguenard, C., Fink, G., Taulelle, F., Henry, M., … Férey, G. (2004). A Rationale for the Large Breathing of the Porous Aluminum Terephthalate (MIL-53) Upon Hydration. Chemistry - A European Journal, 10(6), 1373-1382. doi:10.1002/chem.200305413

Volkringer, C., Leclerc, H., Lavalley, J.-C., Loiseau, T., Férey, G., Daturi, M., & Vimont, A. (2012). Infrared Spectroscopy Investigation of the Acid Sites in the Metal–Organic Framework Aluminum Trimesate MIL-100(Al). The Journal of Physical Chemistry C, 116(9), 5710-5719. doi:10.1021/jp210671t

Klein, N., Hoffmann, H. C., Cadiau, A., Getzschmann, J., Lohe, M. R., Paasch, S., … Kaskel, S. (2012). Structural flexibility and intrinsic dynamics in the M2(2,6-ndc)2(dabco) (M = Ni, Cu, Co, Zn) metal–organic frameworks. Journal of Materials Chemistry, 22(20), 10303. doi:10.1039/c2jm15601f

Garibay, S. J., & Cohen, S. M. (2010). Isoreticular synthesis and modification of frameworks with the UiO-66 topology. Chemical Communications, 46(41), 7700. doi:10.1039/c0cc02990d

Katz, M. J., Brown, Z. J., Colón, Y. J., Siu, P. W., Scheidt, K. A., Snurr, R. Q., … Farha, O. K. (2013). A facile synthesis of UiO-66, UiO-67 and their derivatives. Chemical Communications, 49(82), 9449. doi:10.1039/c3cc46105j

Rodenas, T., Luz, I., Prieto, G., Seoane, B., Miro, H., Corma, A., … Gascon, J. (2014). Metal–organic framework nanosheets in polymer composite materials for gas separation. Nature Materials, 14(1), 48-55. doi:10.1038/nmat4113

Schlichte, K., Kratzke, T., & Kaskel, S. (2004). Improved synthesis, thermal stability and catalytic properties of the metal-organic framework compound Cu3(BTC)2. Microporous and Mesoporous Materials, 73(1-2), 81-88. doi:10.1016/j.micromeso.2003.12.027

Cui, X., Xu, M.-C., Zhang, L.-J., Yao, R.-X., & Zhang, X.-M. (2015). Solvent-free heterogeneous catalysis for cyanosilylation in a dynamic cobalt-MOF. Dalton Transactions, 44(28), 12711-12716. doi:10.1039/c5dt01456e

Mo, K., Yang, Y., & Cui, Y. (2014). A Homochiral Metal–Organic Framework as an Effective Asymmetric Catalyst for Cyanohydrin Synthesis. Journal of the American Chemical Society, 136(5), 1746-1749. doi:10.1021/ja411887c

Gomez, G. E., Kaczmarek, A. M., Van Deun, R., Brusau, E. V., Narda, G. E., Vega, D., … Monge, M. Á. (2016). Photoluminescence, Unconventional-Range Temperature Sensing, and Efficient Catalytic Activities of Lanthanide Metal-Organic Frameworks. European Journal of Inorganic Chemistry, 2016(10), 1577-1588. doi:10.1002/ejic.201501402

Telalović, S., & Hanefeld, U. (2011). Investigation of the cyanosilylation catalysed by metal-siliceous catalysts. Catalysis Communications, 12(6), 493-496. doi:10.1016/j.catcom.2010.11.012

Iwanami, K., Choi, J.-C., Lu, B., Sakakura, T., & Yasuda, H. (2008). Remarkable acceleration of cyanosilylation by the mesoporous Al-MCM-41 catalyst. Chemical Communications, (8), 1002. doi:10.1039/b718462j

Millward, A. R., & Yaghi, O. M. (2005). Metal−Organic Frameworks with Exceptionally High Capacity for Storage of Carbon Dioxide at Room Temperature. Journal of the American Chemical Society, 127(51), 17998-17999. doi:10.1021/ja0570032

Siu, P. W., Brown, Z. J., Farha, O. K., Hupp, J. T., & Scheidt, K. A. (2013). A mixed dicarboxylate strut approach to enhancing catalytic activity of a de novo urea derivative of metal–organic framework UiO-67. Chemical Communications, 49(93), 10920. doi:10.1039/c3cc47177b

Biswas, S., Ahnfeldt, T., & Stock, N. (2011). New Functionalized Flexible Al-MIL-53-X (X = -Cl, -Br, -CH3, -NO2, -(OH)2) Solids: Syntheses, Characterization, Sorption, and Breathing Behavior. Inorganic Chemistry, 50(19), 9518-9526. doi:10.1021/ic201219g

Vermoortele, F., Vandichel, M., Van de Voorde, B., Ameloot, R., Waroquier, M., Van Speybroeck, V., & De Vos, D. E. (2012). Electronic Effects of Linker Substitution on Lewis Acid Catalysis with Metal-Organic Frameworks. Angewandte Chemie International Edition, 51(20), 4887-4890. doi:10.1002/anie.201108565

Santiago-Portillo, A., Navalón, S., Concepción, P., Álvaro, M., & García, H. (2017). Influence of Terephthalic Acid Substituents on the Catalytic Activity of MIL-101(Cr) in Three Lewis Acid Catalyzed Reactions. ChemCatChem, 9(13), 2506-2511. doi:10.1002/cctc.201700236

Kim, M., Cahill, J. F., Fei, H., Prather, K. A., & Cohen, S. M. (2012). Postsynthetic Ligand and Cation Exchange in Robust Metal–Organic Frameworks. Journal of the American Chemical Society, 134(43), 18082-18088. doi:10.1021/ja3079219

Yang, X., & Xu, Q. (2017). Bimetallic Metal–Organic Frameworks for Gas Storage and Separation. Crystal Growth & Design, 17(4), 1450-1455. doi:10.1021/acs.cgd.7b00166

Sun, Q., Liu, M., Li, K., Han, Y., Zuo, Y., Chai, F., … Guo, X. (2017). Synthesis of Fe/M (M = Mn, Co, Ni) bimetallic metal organic frameworks and their catalytic activity for phenol degradation under mild conditions. Inorganic Chemistry Frontiers, 4(1), 144-153. doi:10.1039/c6qi00441e

Dolgopolova, E. A., Brandt, A. J., Ejegbavwo, O. A., Duke, A. S., Maddumapatabandi, T. D., Galhenage, R. P., … Shustova, N. B. (2017). Electronic Properties of Bimetallic Metal–Organic Frameworks (MOFs): Tailoring the Density of Electronic States through MOF Modularity. Journal of the American Chemical Society, 139(14), 5201-5209. doi:10.1021/jacs.7b01125

Zou, R., Li, P.-Z., Zeng, Y.-F., Liu, J., Zhao, R., Duan, H., … Zhao, Y. (2016). Bimetallic Metal-Organic Frameworks: Probing the Lewis Acid Site for CO2Conversion. Small, 12(17), 2334-2343. doi:10.1002/smll.201503741

Yoon, M., Srirambalaji, R., & Kim, K. (2011). Homochiral Metal–Organic Frameworks for Asymmetric Heterogeneous Catalysis. Chemical Reviews, 112(2), 1196-1231. doi:10.1021/cr2003147

Vermoortele, F., Ameloot, R., Alaerts, L., Matthessen, R., Carlier, B., Fernandez, E. V. R., … De Vos, D. E. (2012). Tuning the catalytic performance of metal–organic frameworks in fine chemistry by active site engineering. Journal of Materials Chemistry, 22(20), 10313. doi:10.1039/c2jm16030g

Ravon, U., Savonnet, M., Aguado, S., Domine, M. E., Janneau, E., & Farrusseng, D. (2010). Engineering of coordination polymers for shape selective alkylation of large aromatics and the role of defects. Microporous and Mesoporous Materials, 129(3), 319-329. doi:10.1016/j.micromeso.2009.06.008

Vermoortele, F., Bueken, B., Le Bars, G., Van de Voorde, B., Vandichel, M., Houthoofd, K., … De Vos, D. E. (2013). Synthesis Modulation as a Tool To Increase the Catalytic Activity of Metal–Organic Frameworks: The Unique Case of UiO-66(Zr). Journal of the American Chemical Society, 135(31), 11465-11468. doi:10.1021/ja405078u

Alaerts, L., Séguin, E., Poelman, H., Thibault-Starzyk, F., Jacobs, P. A., & De Vos, D. E. (2006). Probing the Lewis Acidity and Catalytic Activity of the Metal–Organic Framework [Cu3(btc)2] (BTC=Benzene-1,3,5-tricarboxylate). Chemistry - A European Journal, 12(28), 7353-7363. doi:10.1002/chem.200600220

Pathan, N. B., Rahatgaonkar, A. M., & Chorghade, M. S. (2011). Metal-organic framework Cu3 (BTC)2(H2O)3 catalyzed Aldol synthesis of pyrimidine-chalcone hybrids. Catalysis Communications, 12(12), 1170-1176. doi:10.1016/j.catcom.2011.03.040

Gregory, R. J. H. (1999). Cyanohydrins in Nature and the Laboratory:  Biology, Preparations, and Synthetic Applications. Chemical Reviews, 99(12), 3649-3682. doi:10.1021/cr9902906

Brunel, J.-M., & Holmes, I. P. (2004). Chemically Catalyzed Asymmetric Cyanohydrin Syntheses. Angewandte Chemie International Edition, 43(21), 2752-2778. doi:10.1002/anie.200300604

Aguirre-Díaz, L. M., Iglesias, M., Snejko, N., Gutiérrez-Puebla, E., & Monge, M. Á. (2013). Indium metal–organic frameworks as catalysts in solvent-free cyanosilylation reaction. CrystEngComm, 15(45), 9562. doi:10.1039/c3ce41123k

Aguirre-Díaz, L. M., Iglesias, M., Snejko, N., Gutiérrez-Puebla, E., & Monge, M. Á. (2015). Toward understanding the structure–catalyst activity relationship of new indium MOFs as catalysts for solvent-free ketone cyanosilylation. RSC Advances, 5(10), 7058-7065. doi:10.1039/c4ra13924k

Lacour, M.-A., Rahier, N. J., & Taillefer, M. (2011). Mild and Efficient Trimethylsilylcyanation of Ketones Catalysed by PNP Chloride. Chemistry - A European Journal, 17(44), 12276-12279. doi:10.1002/chem.201101195

Yang, T., Bartoszewicz, A., Ju, J., Sun, J., Liu, Z., Zou, X., … Lin, J. (2011). Microporous Aluminoborates with Large Channels: Structural and Catalytic Properties. Angewandte Chemie International Edition, 50(52), 12555-12558. doi:10.1002/anie.201106310

Ogasawara, Y., Uchida, S., Yamaguchi, K., & Mizuno, N. (2009). A Tin-Tungsten Mixed Oxide as an Efficient Heterogeneous Catalyst for CC Bond-Forming Reactions. Chemistry - A European Journal, 15(17), 4343-4349. doi:10.1002/chem.200802536

DeSimone, J. M. (2002). Practical Approaches to Green Solvents. Science, 297(5582), 799-803. doi:10.1126/science.1069622

Zhang, Z., Chen, J., Bao, Z., Chang, G., Xing, H., & Ren, Q. (2015). Insight into the catalytic properties and applications of metal–organic frameworks in the cyanosilylation of aldehydes. RSC Advances, 5(97), 79355-79360. doi:10.1039/c5ra13102b

Procopio, A., Das, G., Nardi, M., Oliverio, M., & Pasqua, L. (2008). A Mesoporous ErIII-MCM-41 Catalyst for the Cyanosilylation of Aldehydes and Ketones under Solvent-free Conditions. ChemSusChem, 1(11), 916-919. doi:10.1002/cssc.200800183

Dhakshinamoorthy, A., Alvaro, M., & Garcia, H. (2010). Aerobic oxidation of thiols to disulfides using iron metal–organic frameworks as solid redox catalysts. Chemical Communications, 46(35), 6476. doi:10.1039/c0cc02210a

Rapeyko, A., Climent, M. J., Corma, A., Concepción, P., & Iborra, S. (2015). Postsynthesis-Treated Iron-Based Metal-Organic Frameworks as Selective Catalysts for the Sustainable Synthesis of Nitriles. ChemSusChem, 8(19), 3270-3282. doi:10.1002/cssc.201500695

Saxena, A., Kumar, A., & Mozumdar, S. (2007). Ni-nanoparticles: An efficient green catalyst for chemo-selective oxidative coupling of thiols. Journal of Molecular Catalysis A: Chemical, 269(1-2), 35-40. doi:10.1016/j.molcata.2006.12.042

Oba, M., Tanaka, K., Nishiyama, K., & Ando, W. (2011). Aerobic Oxidation of Thiols to Disulfides Catalyzed by Diaryl Tellurides under Photosensitized Conditions. The Journal of Organic Chemistry, 76(10), 4173-4177. doi:10.1021/jo200496r

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem