Mostrar el registro sencillo del ítem
dc.contributor.author | Llopis-Perez, Sebastian | es_ES |
dc.contributor.author | Velty, Alexandra | es_ES |
dc.contributor.author | DÍAZ MORALES, URBANO MANUEL | es_ES |
dc.date.accessioned | 2020-11-17T04:33:02Z | |
dc.date.available | 2020-11-17T04:33:02Z | |
dc.date.issued | 2019-08 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/155134 | |
dc.description.abstract | [EN] Three families of organosiliceous materials with different structuration level, order, and textural properties (non-ordered, M41S, and SBA-15 type materials) were prepared incorporating in their structural framework chiral pyrrolidine units with variable content. Likewise, non-ordered mesoporous hybrid solids were obtained through a sol-gel process in a fluoride medium, while M41S and SBA-15 type materials were obtained through micellar routes in the presence of long-chain neutral surfactants or block copolymers. Thanks to appropriate characterization studies and catalytic tests for the Michael addition between butyraldehyde and beta-nitrostyrene, we showed how the void shapes and sizes present in the structure of hybrid materials control the diffusion of reactants and products, as well as confine transition states and reactive intermediates. The best catalytic results, considering activity and enantioselectivity, were achieved in the presence of a non-ordered material, NOH-Pyr-5%, which exhibited the highest Brunauer-Emmett-Teller (BET) area, with a 96% yield and a 82% ee for the Michael adduct. | es_ES |
dc.description.sponsorship | This research was funded by the Spanish Government(MAT2017-82288-C2-1-P), Severo Ochoa Excellence Program (SEV-2016-0683), and MULTY2HYCAT (EU-Horizon 2020 funded project under grant agreement no. 720783). S. Ll. is thankful for the predoctoral fellowship from MINECO for financial support (BES-2015-072627). | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | MDPI AG | es_ES |
dc.relation.ispartof | Catalysts | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Hybrid materials | es_ES |
dc.subject | Heterogeneous catalysts | es_ES |
dc.subject | Mesoporous organosilicas | es_ES |
dc.subject | Chirality | es_ES |
dc.subject | Michael addition | es_ES |
dc.title | Influence of the Framework Topology on the Reactivity of Chiral Pyrrolidine Units Inserted in Different Porous Organosilicas | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.3390/catal9080654 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/EC/H2020/720783/EU/MULTI-site organic-inorganic HYbrid CATalysts for MULTI-step chemical processes/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//BES-2015-072627/ES/BES-2015-072627/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//SEV-2016-0683/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/MAT2017-82288-C2-1-P/ES/MATERIALES HIBRIDOS MULTIFUNCIONALES BASADOS EN NANO-UNIDADES ESTRUCTURALES ACTIVAS/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química | es_ES |
dc.description.bibliographicCitation | Llopis-Perez, S.; Velty, A.; Díaz Morales, UM. (2019). Influence of the Framework Topology on the Reactivity of Chiral Pyrrolidine Units Inserted in Different Porous Organosilicas. Catalysts. 9(8):1-21. https://doi.org/10.3390/catal9080654 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.3390/catal9080654 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 21 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 9 | es_ES |
dc.description.issue | 8 | es_ES |
dc.identifier.eissn | 2073-4344 | es_ES |
dc.relation.pasarela | S\403575 | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.contributor.funder | Agencia Estatal de Investigación | es_ES |
dc.description.references | Kuschel, A., Drescher, M., Kuschel, T., & Polarz, S. (2010). Bifunctional Mesoporous Organosilica Materials and Their Application in Catalysis: Cooperative Effects or Not? Chemistry of Materials, 22(4), 1472-1482. doi:10.1021/cm903412e | es_ES |
dc.description.references | Díaz, U., Brunel, D., & Corma, A. (2013). Catalysis using multifunctional organosiliceous hybrid materials. Chemical Society Reviews, 42(9), 4083. doi:10.1039/c2cs35385g | es_ES |
dc.description.references | Kadib, A. E., Molvinger, K., Guimon, C., Quignard, F., & Brunel, D. (2008). Design of Stable Nanoporous Hybrid Chitosan/Titania as Cooperative Bifunctional Catalysts. Chemistry of Materials, 20(6), 2198-2204. doi:10.1021/cm800080s | es_ES |
dc.description.references | Horcajada, P., Serre, C., Vallet-Regí, M., Sebban, M., Taulelle, F., & Férey, G. (2006). Metal–Organic Frameworks as Efficient Materials for Drug Delivery. Angewandte Chemie International Edition, 45(36), 5974-5978. doi:10.1002/anie.200601878 | es_ES |
dc.description.references | Zhang, J., Han, X., Wu, X., Liu, Y., & Cui, Y. (2019). Chiral DHIP- and Pyrrolidine-Based Covalent Organic Frameworks for Asymmetric Catalysis. ACS Sustainable Chemistry & Engineering, 7(5), 5065-5071. doi:10.1021/acssuschemeng.8b05887 | es_ES |
dc.description.references | Loy, D. A., & Shea, K. J. (1995). Bridged Polysilsesquioxanes. Highly Porous Hybrid Organic-Inorganic Materials. Chemical Reviews, 95(5), 1431-1442. doi:10.1021/cr00037a013 | es_ES |
dc.description.references | Inagaki, S., Guan, S., Fukushima, Y., Ohsuna, T., & Terasaki, O. (1999). Novel Mesoporous Materials with a Uniform Distribution of Organic Groups and Inorganic Oxide in Their Frameworks. Journal of the American Chemical Society, 121(41), 9611-9614. doi:10.1021/ja9916658 | es_ES |
dc.description.references | Villaverde, G., Arnanz, A., Iglesias, M., Monge, A., Sánchez, F., & Snejko, N. (2011). Development of homogeneous and heterogenized rhodium(i) and palladium(ii) complexes with ligands based on a chiral proton sponge building block and their application as catalysts. Dalton Transactions, 40(37), 9589. doi:10.1039/c1dt10597c | es_ES |
dc.description.references | Melde, B. J., Holland, B. T., Blanford, C. F., & Stein, A. (1999). Mesoporous Sieves with Unified Hybrid Inorganic/Organic Frameworks. Chemistry of Materials, 11(11), 3302-3308. doi:10.1021/cm9903935 | es_ES |
dc.description.references | García-García, P., Moreno, J. M., Díaz, U., Bruix, M., & Corma, A. (2016). Organic–inorganic supramolecular solid catalyst boosts organic reactions in water. Nature Communications, 7(1). doi:10.1038/ncomms10835 | es_ES |
dc.description.references | Moreno, J. M., Velty, A., Díaz, U., & Corma, A. (2019). Synthesis of 2D and 3D MOFs with tuneable Lewis acidity from preformed 1D hybrid sub-domains. Chemical Science, 10(7), 2053-2066. doi:10.1039/c8sc04372h | es_ES |
dc.description.references | Szőllősi, G., Gombkötő, D., Mogyorós, A. Z., & Fülöp, F. (2018). Surface-Improved Asymmetric Michael Addition Catalyzed by Amino Acids Adsorbed on Laponite. Advanced Synthesis & Catalysis, 360(10), 1992-2004. doi:10.1002/adsc.201701627 | es_ES |
dc.description.references | Feng, J., Li, X., & Cheng, J.-P. (2017). Enantioselective Organocatalyzed Vinylogous Michael Reactions of 3-Alkylidene Oxindoles with Enals. The Journal of Organic Chemistry, 82(3), 1412-1419. doi:10.1021/acs.joc.6b02582 | es_ES |
dc.description.references | Bernardi, L., Fochi, M., Carbone, R., Martinelli, A., Fox, M. E., Cobley, C. J., … Carlone, A. (2015). Organocatalytic Asymmetric Conjugate Additions to Cyclopent-1-enecarbaldehyde: A Critical Assessment of Organocatalytic Approaches towards the Telaprevir Bicyclic Core. Chemistry - A European Journal, 21(52), 19208-19222. doi:10.1002/chem.201503352 | es_ES |
dc.description.references | Afewerki, S., Ma, G., Ibrahem, I., Liu, L., Sun, J., & Córdova, A. (2015). Highly Enantioselective Control of Dynamic Cascade Transformations by Dual Catalysis: Asymmetric Synthesis of Polysubstituted Spirocyclic Oxindoles. ACS Catalysis, 5(2), 1266-1272. doi:10.1021/cs501975u | es_ES |
dc.description.references | Monge-Marcet, A., Pleixats, R., Cattoën, X., Man, M. W. C., Alonso, D. A., & Nájera, C. (2011). Prolinamide bridged silsesquioxane as an efficient, eco-compatible and recyclable chiral organocatalyst. New Journal of Chemistry, 35(12), 2766. doi:10.1039/c1nj20516a | es_ES |
dc.description.references | Sagamanova, I., Rodríguez-Escrich, C., Molnár, I. G., Sayalero, S., Gilmour, R., & Pericàs, M. A. (2015). Translating the Enantioselective Michael Reaction to a Continuous Flow Paradigm with an Immobilized, Fluorinated Organocatalyst. ACS Catalysis, 5(11), 6241-6248. doi:10.1021/acscatal.5b01746 | es_ES |
dc.description.references | Betancort, J. M., & Barbas, C. F. (2001). Catalytic Direct Asymmetric Michael Reactions: Taming Naked Aldehyde Donors. Organic Letters, 3(23), 3737-3740. doi:10.1021/ol0167006 | es_ES |