- -

Influence of the Framework Topology on the Reactivity of Chiral Pyrrolidine Units Inserted in Different Porous Organosilicas

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Influence of the Framework Topology on the Reactivity of Chiral Pyrrolidine Units Inserted in Different Porous Organosilicas

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Llopis-Perez, Sebastian es_ES
dc.contributor.author Velty, Alexandra es_ES
dc.contributor.author DÍAZ MORALES, URBANO MANUEL es_ES
dc.date.accessioned 2020-11-17T04:33:02Z
dc.date.available 2020-11-17T04:33:02Z
dc.date.issued 2019-08 es_ES
dc.identifier.uri http://hdl.handle.net/10251/155134
dc.description.abstract [EN] Three families of organosiliceous materials with different structuration level, order, and textural properties (non-ordered, M41S, and SBA-15 type materials) were prepared incorporating in their structural framework chiral pyrrolidine units with variable content. Likewise, non-ordered mesoporous hybrid solids were obtained through a sol-gel process in a fluoride medium, while M41S and SBA-15 type materials were obtained through micellar routes in the presence of long-chain neutral surfactants or block copolymers. Thanks to appropriate characterization studies and catalytic tests for the Michael addition between butyraldehyde and beta-nitrostyrene, we showed how the void shapes and sizes present in the structure of hybrid materials control the diffusion of reactants and products, as well as confine transition states and reactive intermediates. The best catalytic results, considering activity and enantioselectivity, were achieved in the presence of a non-ordered material, NOH-Pyr-5%, which exhibited the highest Brunauer-Emmett-Teller (BET) area, with a 96% yield and a 82% ee for the Michael adduct. es_ES
dc.description.sponsorship This research was funded by the Spanish Government(MAT2017-82288-C2-1-P), Severo Ochoa Excellence Program (SEV-2016-0683), and MULTY2HYCAT (EU-Horizon 2020 funded project under grant agreement no. 720783). S. Ll. is thankful for the predoctoral fellowship from MINECO for financial support (BES-2015-072627). es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Catalysts es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Hybrid materials es_ES
dc.subject Heterogeneous catalysts es_ES
dc.subject Mesoporous organosilicas es_ES
dc.subject Chirality es_ES
dc.subject Michael addition es_ES
dc.title Influence of the Framework Topology on the Reactivity of Chiral Pyrrolidine Units Inserted in Different Porous Organosilicas es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/catal9080654 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/720783/EU/MULTI-site organic-inorganic HYbrid CATalysts for MULTI-step chemical processes/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//BES-2015-072627/ES/BES-2015-072627/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//SEV-2016-0683/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/MAT2017-82288-C2-1-P/ES/MATERIALES HIBRIDOS MULTIFUNCIONALES BASADOS EN NANO-UNIDADES ESTRUCTURALES ACTIVAS/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química es_ES
dc.description.bibliographicCitation Llopis-Perez, S.; Velty, A.; Díaz Morales, UM. (2019). Influence of the Framework Topology on the Reactivity of Chiral Pyrrolidine Units Inserted in Different Porous Organosilicas. Catalysts. 9(8):1-21. https://doi.org/10.3390/catal9080654 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/catal9080654 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 21 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 9 es_ES
dc.description.issue 8 es_ES
dc.identifier.eissn 2073-4344 es_ES
dc.relation.pasarela S\403575 es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.description.references Kuschel, A., Drescher, M., Kuschel, T., & Polarz, S. (2010). Bifunctional Mesoporous Organosilica Materials and Their Application in Catalysis: Cooperative Effects or Not? Chemistry of Materials, 22(4), 1472-1482. doi:10.1021/cm903412e es_ES
dc.description.references Díaz, U., Brunel, D., & Corma, A. (2013). Catalysis using multifunctional organosiliceous hybrid materials. Chemical Society Reviews, 42(9), 4083. doi:10.1039/c2cs35385g es_ES
dc.description.references Kadib, A. E., Molvinger, K., Guimon, C., Quignard, F., & Brunel, D. (2008). Design of Stable Nanoporous Hybrid Chitosan/Titania as Cooperative Bifunctional Catalysts. Chemistry of Materials, 20(6), 2198-2204. doi:10.1021/cm800080s es_ES
dc.description.references Horcajada, P., Serre, C., Vallet-Regí, M., Sebban, M., Taulelle, F., & Férey, G. (2006). Metal–Organic Frameworks as Efficient Materials for Drug Delivery. Angewandte Chemie International Edition, 45(36), 5974-5978. doi:10.1002/anie.200601878 es_ES
dc.description.references Zhang, J., Han, X., Wu, X., Liu, Y., & Cui, Y. (2019). Chiral DHIP- and Pyrrolidine-Based Covalent Organic Frameworks for Asymmetric Catalysis. ACS Sustainable Chemistry & Engineering, 7(5), 5065-5071. doi:10.1021/acssuschemeng.8b05887 es_ES
dc.description.references Loy, D. A., & Shea, K. J. (1995). Bridged Polysilsesquioxanes. Highly Porous Hybrid Organic-Inorganic Materials. Chemical Reviews, 95(5), 1431-1442. doi:10.1021/cr00037a013 es_ES
dc.description.references Inagaki, S., Guan, S., Fukushima, Y., Ohsuna, T., & Terasaki, O. (1999). Novel Mesoporous Materials with a Uniform Distribution of Organic Groups and Inorganic Oxide in Their Frameworks. Journal of the American Chemical Society, 121(41), 9611-9614. doi:10.1021/ja9916658 es_ES
dc.description.references Villaverde, G., Arnanz, A., Iglesias, M., Monge, A., Sánchez, F., & Snejko, N. (2011). Development of homogeneous and heterogenized rhodium(i) and palladium(ii) complexes with ligands based on a chiral proton sponge building block and their application as catalysts. Dalton Transactions, 40(37), 9589. doi:10.1039/c1dt10597c es_ES
dc.description.references Melde, B. J., Holland, B. T., Blanford, C. F., & Stein, A. (1999). Mesoporous Sieves with Unified Hybrid Inorganic/Organic Frameworks. Chemistry of Materials, 11(11), 3302-3308. doi:10.1021/cm9903935 es_ES
dc.description.references García-García, P., Moreno, J. M., Díaz, U., Bruix, M., & Corma, A. (2016). Organic–inorganic supramolecular solid catalyst boosts organic reactions in water. Nature Communications, 7(1). doi:10.1038/ncomms10835 es_ES
dc.description.references Moreno, J. M., Velty, A., Díaz, U., & Corma, A. (2019). Synthesis of 2D and 3D MOFs with tuneable Lewis acidity from preformed 1D hybrid sub-domains. Chemical Science, 10(7), 2053-2066. doi:10.1039/c8sc04372h es_ES
dc.description.references Szőllősi, G., Gombkötő, D., Mogyorós, A. Z., & Fülöp, F. (2018). Surface-Improved Asymmetric Michael Addition Catalyzed by Amino Acids Adsorbed on Laponite. Advanced Synthesis & Catalysis, 360(10), 1992-2004. doi:10.1002/adsc.201701627 es_ES
dc.description.references Feng, J., Li, X., & Cheng, J.-P. (2017). Enantioselective Organocatalyzed Vinylogous Michael Reactions of 3-Alkylidene Oxindoles with Enals. The Journal of Organic Chemistry, 82(3), 1412-1419. doi:10.1021/acs.joc.6b02582 es_ES
dc.description.references Bernardi, L., Fochi, M., Carbone, R., Martinelli, A., Fox, M. E., Cobley, C. J., … Carlone, A. (2015). Organocatalytic Asymmetric Conjugate Additions to Cyclopent-1-enecarbaldehyde: A Critical Assessment of Organocatalytic Approaches towards the Telaprevir Bicyclic Core. Chemistry - A European Journal, 21(52), 19208-19222. doi:10.1002/chem.201503352 es_ES
dc.description.references Afewerki, S., Ma, G., Ibrahem, I., Liu, L., Sun, J., & Córdova, A. (2015). Highly Enantioselective Control of Dynamic Cascade Transformations by Dual Catalysis: Asymmetric Synthesis of Polysubstituted Spirocyclic Oxindoles. ACS Catalysis, 5(2), 1266-1272. doi:10.1021/cs501975u es_ES
dc.description.references Monge-Marcet, A., Pleixats, R., Cattoën, X., Man, M. W. C., Alonso, D. A., & Nájera, C. (2011). Prolinamide bridged silsesquioxane as an efficient, eco-compatible and recyclable chiral organocatalyst. New Journal of Chemistry, 35(12), 2766. doi:10.1039/c1nj20516a es_ES
dc.description.references Sagamanova, I., Rodríguez-Escrich, C., Molnár, I. G., Sayalero, S., Gilmour, R., & Pericàs, M. A. (2015). Translating the Enantioselective Michael Reaction to a Continuous Flow Paradigm with an Immobilized, Fluorinated Organocatalyst. ACS Catalysis, 5(11), 6241-6248. doi:10.1021/acscatal.5b01746 es_ES
dc.description.references Betancort, J. M., & Barbas, C. F. (2001). Catalytic Direct Asymmetric Michael Reactions:  Taming Naked Aldehyde Donors. Organic Letters, 3(23), 3737-3740. doi:10.1021/ol0167006 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem