Mostrar el registro sencillo del ítem
dc.contributor.author | Rubio, M. | es_ES |
dc.contributor.author | Martinez-Gomez, P. | es_ES |
dc.contributor.author | Marais, A. | es_ES |
dc.contributor.author | SANCHEZ NAVARRO, JESUS ANGEL | es_ES |
dc.contributor.author | Pallás Benet, Vicente | es_ES |
dc.contributor.author | Candresse, T. | es_ES |
dc.date.accessioned | 2020-11-17T04:33:14Z | |
dc.date.available | 2020-11-17T04:33:14Z | |
dc.date.issued | 2017-09 | es_ES |
dc.identifier.issn | 0003-4746 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/155139 | |
dc.description.abstract | [EN] The stone fruit genus Prunus, within the family Rosaceae, comprises more than 230 species, some of which have great importance or value as ornamental or fruit crops. Prunus are affected by numerous viruses and viroids linked to the vegetative propagation practices in many of the cultivated species. To date, 44 viruses and three viroids have been described in the 9 main cultivated Prunus species. Seven of these viruses and one viroid have been identified in Prunus hosts within the last 5 years. This work addresses recent advances and prospects in the study of viruses and viroids affecting Prunus species, mostly concerning the detection and characterisation of the agents involved, pathogenesis analysis and the search for new control tools. New sequencing technologies are quickly reshaping the way we can identify and characterise new plant viruses and isolates. Specific efforts aimed at virus identification or data mining of high-throughput sequencing data generated for plant genomics-oriented purposes can efficiently reveal the presence of known or novel viruses. These technologies have also been used to gain a deeper knowledge of the pathogenesis mechanisms at the gene and miRNA expression level that underlie the interactions between Prunus spp. and their main viruses and viroids. New biotechnological control tools include the transfer of resistance by grafting, the use of new sources of resistance and the development of gene silencing strategies using genetic transformation. In addition, the application of next generation sequencing and genome editing techniques will contribute to improving our knowledge of virus¿host interactions and the mechanisms of resistance. This should be of great interest in the search to obtain new Prunus cultivars capable of dealing both with known viruses and viroids and with those that are yet to be discovered in the uncertain scenario of climate change. | es_ES |
dc.description.sponsorship | The authors offer grateful thanks to Spanish Ministry of Economy and Competitiveness for the Ramon y Cajal contract (RYC-2013-12563) of Dr. Manuel Rubio. This study has been supported by the projects 'Molecular and Genetic bases of multiple resistance to Plum pox virus (PPV) and Apple chlorotic leaf spot virus (ACLSV) in apricot' (AGL2015-68021-R) from the Spanish Ministry of Economy and Competiveness and 'Breeding stone fruit species assisted by molecular tools' from the Seneca Foundation of the Region of Murcia (19879/GERM/15). | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Blackwell Publishing | es_ES |
dc.relation.ispartof | Annals of Applied Biology | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Ampelovirus | es_ES |
dc.subject | Avsunviroidae | es_ES |
dc.subject | Breeding | es_ES |
dc.subject | Capillovirus | es_ES |
dc.subject | Characterisation | es_ES |
dc.subject | Cheravirus | es_ES |
dc.subject | Control | es_ES |
dc.subject | Detection | es_ES |
dc.subject | Foveavirus | es_ES |
dc.subject | Llarvirus | es_ES |
dc.subject | Nepovirus | es_ES |
dc.subject | New generation sequencing | es_ES |
dc.subject | Ourmiavirus | es_ES |
dc.subject | Pospiviroidae | es_ES |
dc.subject | Potyvirus | es_ES |
dc.subject | Prunus | es_ES |
dc.subject | Resistance | es_ES |
dc.subject | Tombusvirus | es_ES |
dc.subject | Transmission | es_ES |
dc.subject | Trichovirus | es_ES |
dc.title | Recent advances and prospects in Prunus virology | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1111/aab.12371 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//RYC-2013-12563/ES/RYC-2013-12563/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//AGL2015-68021-R/ES/BASES GENETICAS Y MOLECULARES DE LA RESISTENCIA MULTIPLE A PLUM POX VIRUS (PPV, SHARKA) Y APPLE CHLOROTIC LEAF SPOT VIRUS (ACLSV, VIRUELA) EN ALBARICOQUERO/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/f SéNeCa//19879%2FGERM%2F15/ | es_ES |
dc.rights.accessRights | Cerrado | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes | es_ES |
dc.description.bibliographicCitation | Rubio, M.; Martinez-Gomez, P.; Marais, A.; Sanchez Navarro, JA.; Pallás Benet, V.; Candresse, T. (2017). Recent advances and prospects in Prunus virology. Annals of Applied Biology. 171(2):125-138. https://doi.org/10.1111/aab.12371 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1111/aab.12371 | es_ES |
dc.description.upvformatpinicio | 125 | es_ES |
dc.description.upvformatpfin | 138 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 171 | es_ES |
dc.description.issue | 2 | es_ES |
dc.relation.pasarela | S\356546 | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.contributor.funder | Fundación Séneca-Agencia de Ciencia y Tecnología de la Región de Murcia | es_ES |
dc.description.references | Angelova L. Stoev A. Borisova E. Avramov L. 2017 Proceedings of SPIE 10226, 19th International Conference and School on Quantum Electronics: Laser Physics and Applications, 1022614 https://doi.org/10.1117/12.2261807 | es_ES |
dc.description.references | Babu, M., Griffiths, J. S., Huang, T.-S., & Wang, A. (2008). Altered gene expression changes in Arabidopsis leaf tissues and protoplasts in response to Plum pox virus infection. BMC Genomics, 9(1), 325. doi:10.1186/1471-2164-9-325 | es_ES |
dc.description.references | Bag, S., Al Rwahnih, M., Li, A., Gonzalez, A., Rowhani, A., Uyemoto, J. K., & Sudarshana, M. R. (2015). Detection of a New Luteovirus in Imported Nectarine Trees: A Case Study to Propose Adoption of Metagenomics in Post-Entry Quarantine. Phytopathology®, 105(6), 840-846. doi:10.1094/phyto-09-14-0262-r | es_ES |
dc.description.references | Barba, M., Czosnek, H., & Hadidi, A. (2014). Historical Perspective, Development and Applications of Next-Generation Sequencing in Plant Virology. Viruses, 6(1), 106-136. doi:10.3390/v6010106 | es_ES |
dc.description.references | Barba, M., Ilardi, V., & Pasquini, G. (2015). Control of Pome and Stone Fruit Virus Diseases. Control of Plant Virus Diseases - Vegetatively-Propagated Crops, 47-83. doi:10.1016/bs.aivir.2014.11.001 | es_ES |
dc.description.references | Candresse T. Martínez-Gómez P. Rubio M. 2015 XXIII International Conference on Virus and Other Graft Transmissible Diseases of Fruit Crops | es_ES |
dc.description.references | Chirkov, S., Ivanov, P., & Sheveleva, A. (2013). Detection and partial molecular characterization of atypical plum pox virus isolates from naturally infected sour cherry. Archives of Virology, 158(6), 1383-1387. doi:10.1007/s00705-013-1630-x | es_ES |
dc.description.references | Chirkov, S., Ivanov, P., Sheveleva, A., Zakubanskiy, A., & Osipov, G. (2017). New highly divergent Plum pox virus isolates infecting sour cherry in Russia. Virology, 502, 56-62. doi:10.1016/j.virol.2016.12.016 | es_ES |
dc.description.references | Clemente-Moreno, M. J., Hernández, J. A., & Diaz-Vivancos, P. (2014). Sharka: how do plants respond to Plum pox virus infection? Journal of Experimental Botany, 66(1), 25-35. doi:10.1093/jxb/eru428 | es_ES |
dc.description.references | García, J. A., Glasa, M., Cambra, M., & Candresse, T. (2014). Plum pox virusand sharka: a model potyvirus and a major disease. Molecular Plant Pathology, 15(3), 226-241. doi:10.1111/mpp.12083 | es_ES |
dc.description.references | Glasa, M., Prikhodko, Y., Predajňa, L., Nagyová, A., Shneyder, Y., Zhivaeva, T., … Candresse, T. (2013). Characterization of Sour Cherry Isolates of Plum pox virus from the Volga Basin in Russia Reveals a New Cherry Strain of the Virus. Phytopathology®, 103(9), 972-979. doi:10.1094/phyto-11-12-0285-r | es_ES |
dc.description.references | Hadidi, A., Barba, M., Candresse, T., & Jelkmann, W. (Eds.). (2011). Virus and Virus-Like Diseases of Pome and Stone Fruits. doi:10.1094/9780890545010 | es_ES |
dc.description.references | Hadidi, A., Flores, R., Candresse, T., & Barba, M. (2016). Next-Generation Sequencing and Genome Editing in Plant Virology. Frontiers in Microbiology, 7. doi:10.3389/fmicb.2016.01325 | es_ES |
dc.description.references | Herranz, M. C., Niehl, A., Rosales, M., Fiore, N., Zamorano, A., Granell, A., & Pallas, V. (2013). A remarkable synergistic effect at the transcriptomic level in peach fruits doubly infected by prunus necrotic ringspot virus and peach latent mosaic viroid. Virology Journal, 10(1). doi:10.1186/1743-422x-10-164 | es_ES |
dc.description.references | Ilardi, V., & Tavazza, M. (2015). Biotechnological strategies and tools for Plum pox virus resistance: trans-, intra-, cis-genesis, and beyond. Frontiers in Plant Science, 6. doi:10.3389/fpls.2015.00379 | es_ES |
dc.description.references | James, D., Varga, A., & Lye, D. (2014). Analysis of the complete genome of a virus associated with twisted leaf disease of cherry reveals evidence of a close relationship to unassigned viruses in the family Betaflexiviridae. Archives of Virology, 159(9), 2463-2468. doi:10.1007/s00705-014-2075-6 | es_ES |
dc.description.references | Jung, S., Jiwan, D., Cho, I., Lee, T., Abbott, A., Sosinski, B., & Main, D. (2009). Synteny of Prunus and other model plant species. BMC Genomics, 10(1), 76. doi:10.1186/1471-2164-10-76 | es_ES |
dc.description.references | Lenz, O., Přibylová, J., Fránová, J., Koloniuk, I., & Špak, J. (2016). Identification and characterization of a new member of the genus Luteovirus from cherry. Archives of Virology, 162(2), 587-590. doi:10.1007/s00705-016-3125-z | es_ES |
dc.description.references | Lin, L., Li, R., Bateman, M., Mock, R., & Kinard, G. (2013). Development of a multiplex TaqMan real-time RT-PCR assay for simultaneous detection of Asian prunus viruses, plum bark necrosis stem pitting associated virus, and peach latent mosaic viroid. European Journal of Plant Pathology, 137(4), 797-804. doi:10.1007/s10658-013-0289-1 | es_ES |
dc.description.references | Marais, A., Svanella-Dumas, L., Barone, M., Gentit, P., Faure, C., Charlot, G., … Candresse, T. (2011). Development of a polyvalent RT-PCR detection assay covering the genetic diversity of Cherry capillovirus A. Plant Pathology, 61(1), 195-204. doi:10.1111/j.1365-3059.2011.02488.x | es_ES |
dc.description.references | Marais, A., Faure, C., Couture, C., Bergey, B., Gentit, P., & Candresse, T. (2014). Characterization by Deep Sequencing of Divergent Plum bark necrosis stem pitting-associated virus (PBNSPaV) Isolates and Development of a Broad-Spectrum PBNSPaV Detection Assay. Phytopathology®, 104(6), 660-666. doi:10.1094/phyto-08-13-0229-r | es_ES |
dc.description.references | Marais, A., Faure, C., Mustafayev, E., & Candresse, T. (2015). Characterization of New Isolates of Apricot vein clearing-associated virus and of a New Prunus-Infecting Virus: Evidence for Recombination as a Driving Force in Betaflexiviridae Evolution. PLOS ONE, 10(6), e0129469. doi:10.1371/journal.pone.0129469 | es_ES |
dc.description.references | Marais, A., Faure, C., Mustafayev, E., Barone, M., Alioto, D., & Candresse, T. (2015). Characterization by Deep Sequencing of Prunus virus T, a Novel Tepovirus Infecting Prunus Species. Phytopathology®, 105(1), 135-140. doi:10.1094/phyto-04-14-0125-r | es_ES |
dc.description.references | Marais, A., Faure, C., Theil, S., Svanella-Dumas, L., Brans, Y., Maurice, I., … Candresse, T. (2016). First Report of Little cherry virus 1 on Plum in France. Plant Disease, 100(12), 2544. doi:10.1094/pdis-06-16-0915-pdn | es_ES |
dc.description.references | Martínez-Gómez, P. (2003). Euphytica, 131(3), 313-322. doi:10.1023/a:1024028518263 | es_ES |
dc.description.references | Martínez-Gómez, P., Rubio, M., Dicenta, F., & Gradziel, T. M. (2004). Resistance to Plum Pox Virus (Dideron Isolate RB3.30) in a Group of California Almonds and Transfer of Resistance to Peach. Journal of the American Society for Horticultural Science, 129(4), 544-548. doi:10.21273/jashs.129.4.0544 | es_ES |
dc.description.references | Martínez-Gómez, P., Crisosto, C. H., Bonghi, C., & Rubio, M. (2011). New approaches to Prunus transcriptome analysis. Genetica, 139(6), 755-769. doi:10.1007/s10709-011-9580-2 | es_ES |
dc.description.references | Massart, S., Olmos, A., Jijakli, H., & Candresse, T. (2014). Current impact and future directions of high throughput sequencing in plant virus diagnostics. Virus Research, 188, 90-96. doi:10.1016/j.virusres.2014.03.029 | es_ES |
dc.description.references | Massart, S., Candresse, T., Gil, J., Lacomme, C., Predajna, L., Ravnikar, M., … Wetzel, T. (2017). A Framework for the Evaluation of Biosecurity, Commercial, Regulatory, and Scientific Impacts of Plant Viruses and Viroids Identified by NGS Technologies. Frontiers in Microbiology, 8. doi:10.3389/fmicb.2017.00045 | es_ES |
dc.description.references | Matic, S., Minafra, A., Sánchez-Navarro, J. A., Pallás, V., Myrta, A., & Martelli, G. P. (2009). ‘Kwanzan Stunting’ syndrome: Detection and molecular characterization of an Italian isolate of Little cherry virus 1. Virus Research, 143(1), 61-67. doi:10.1016/j.virusres.2009.03.005 | es_ES |
dc.description.references | Navarro, B., Gisel, A., Rodio, M. E., Delgado, S., Flores, R., & Di Serio, F. (2012). Small RNAs containing the pathogenic determinant of a chloroplast-replicating viroid guide the degradation of a host mRNA as predicted by RNA silencing. The Plant Journal, 70(6), 991-1003. doi:10.1111/j.1365-313x.2012.04940.x | es_ES |
dc.description.references | Pallas, V., Aparicio, F., Herranz, M. C., Amari, K., Sanchez-Pina, M. A., Myrta, A., & Sanchez-Navarro, J. A. (2012). Ilarviruses of Prunus spp.: A Continued Concern for Fruit Trees. Phytopathology®, 102(12), 1108-1120. doi:10.1094/phyto-02-12-0023-rvw | es_ES |
dc.description.references | Pallas, V., Aparicio, F., Herranz, M. C., Sanchez-Navarro, J. A., & Scott, S. W. (2013). The Molecular Biology of Ilarviruses. Advances in Virus Research, 139-181. doi:10.1016/b978-0-12-407698-3.00005-3 | es_ES |
dc.description.references | Peiró, A., Pallás, V., & Sánchez-Navarro, J. Á. (2011). Simultaneous detection of eight viruses and two viroids affecting stone fruit trees by using a unique polyprobe. European Journal of Plant Pathology, 132(4), 469-475. doi:10.1007/s10658-011-9893-0 | es_ES |
dc.description.references | Postnikova, O. A., & Nemchinov, L. G. (2012). Comparative analysis of microarray data in Arabidopsis transcriptome during compatible interactions with plant viruses. Virology Journal, 9(1). doi:10.1186/1743-422x-9-101 | es_ES |
dc.description.references | Revers, F., & García, J. A. (2015). Molecular Biology of Potyviruses. Advances in Virus Research, 101-199. doi:10.1016/bs.aivir.2014.11.006 | es_ES |
dc.description.references | Rodamilans, B., San León, D., Mühlberger, L., Candresse, T., Neumüller, M., Oliveros, J. C., & García, J. A. (2014). Transcriptomic Analysis of Prunus domestica Undergoing Hypersensitive Response to Plum Pox Virus Infection. PLoS ONE, 9(6), e100477. doi:10.1371/journal.pone.0100477 | es_ES |
dc.description.references | Rubio, M., Pascal, T., Bachellez, A., & Lambert, P. (2009). Quantitative trait loci analysis of Plum pox virus resistance in Prunus davidiana P1908: new insights on the organization of genomic resistance regions. Tree Genetics & Genomes, 6(2), 291-304. doi:10.1007/s11295-009-0249-2 | es_ES |
dc.description.references | Rubio, M., García-Ibarra, A., Dicenta, F., & Martínez-Gómez, P. (2010). Plum pox virus (sharka) sensitivity in Prunus salicina and Prunus cerasifera cultivars against a Dideron-type isolate. Plant Breeding, 130(2), 283-286. doi:10.1111/j.1439-0523.2010.01813.x | es_ES |
dc.description.references | Rubio, M., Martínez-Gómez, P., García-Brunton, J., Pascal, T., García-Ibarra, A., & Dicenta, F. (2012). Sensitivity of peach cultivars against a Dideron isolate of Plum pox virus. Scientia Horticulturae, 144, 81-86. doi:10.1016/j.scienta.2012.06.038 | es_ES |
dc.description.references | Rubio, M., Rodríguez-Moreno, L., Ballester, A. R., de Moura, M. C., Bonghi, C., Candresse, T., & Martínez-Gómez, P. (2014). Analysis of gene expression changes in peach leaves in response toPlum pox virusinfection using RNA-Seq. Molecular Plant Pathology, 16(2), 164-176. doi:10.1111/mpp.12169 | es_ES |
dc.description.references | Rubio, M., Ballester, A. R., Olivares, P. M., Castro de Moura, M., Dicenta, F., & Martínez-Gómez, P. (2015). Gene Expression Analysis of Plum pox virus (Sharka) Susceptibility/Resistance in Apricot (Prunus armeniaca L.). PLOS ONE, 10(12), e0144670. doi:10.1371/journal.pone.0144670 | es_ES |
dc.description.references | Rubio, M., Gómez, E. M., Martínez-Gómez, P., & Dicenta, F. (2015). Behaviour of Apricot Cultivars Against Hop Stunt Viroid. Journal of Phytopathology, 164(3), 193-197. doi:10.1111/jph.12407 | es_ES |
dc.description.references | SCHOLTHOF, K.-B. G., ADKINS, S., CZOSNEK, H., PALUKAITIS, P., JACQUOT, E., HOHN, T., … FOSTER, G. D. (2011). Top 10 plant viruses in molecular plant pathology. Molecular Plant Pathology, 12(9), 938-954. doi:10.1111/j.1364-3703.2011.00752.x | es_ES |
dc.description.references | Velasco, D., Hough, J., Aradhya, M., & Ross-Ibarra, J. (2016). Evolutionary Genomics of Peach and Almond Domestication. G3 Genes|Genomes|Genetics, 6(12), 3985-3993. doi:10.1534/g3.116.032672 | es_ES |
dc.description.references | Villamor, D. E. V., Susaimuthu, J., & Eastwell, K. C. (2015). Genomic Analyses of Cherry Rusty Mottle Group and Cherry Twisted Leaf-Associated Viruses Reveal a Possible New Genus Within the FamilyBetaflexiviridae. Phytopathology®, 105(3), 399-408. doi:10.1094/phyto-03-14-0066-r | es_ES |
dc.description.references | Walia, Y., Dhir, S., Bhadoria, S., Hallan, V., & Zaidi, A. A. (2011). Molecular characterization of Apple scar skin viroid from Himalayan wild cherry. Forest Pathology, 42(1), 84-87. doi:10.1111/j.1439-0329.2011.00723.x | es_ES |
dc.description.references | Wang, A. (2015). Dissecting the Molecular Network of Virus-Plant Interactions: The Complex Roles of Host Factors. Annual Review of Phytopathology, 53(1), 45-66. doi:10.1146/annurev-phyto-080614-120001 | es_ES |
dc.description.references | Wang, Z., Gerstein, M., & Snyder, M. (2009). RNA-Seq: a revolutionary tool for transcriptomics. Nature Reviews Genetics, 10(1), 57-63. doi:10.1038/nrg2484 | es_ES |
dc.description.references | Wang, X., Kohalmi, S. E., Svircev, A., Wang, A., Sanfaçon, H., & Tian, L. (2013). Silencing of the Host Factor eIF(iso)4E Gene Confers Plum Pox Virus Resistance in Plum. PLoS ONE, 8(1), e50627. doi:10.1371/journal.pone.0050627 | es_ES |
dc.description.references | Willner, D., Thurber, R. V., & Rohwer, F. (2009). Metagenomic signatures of 86 microbial and viral metagenomes. Environmental Microbiology, 11(7), 1752-1766. doi:10.1111/j.1462-2920.2009.01901.x | es_ES |