- -

Recent advances and prospects in Prunus virology

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Recent advances and prospects in Prunus virology

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Rubio, M. es_ES
dc.contributor.author Martinez-Gomez, P. es_ES
dc.contributor.author Marais, A. es_ES
dc.contributor.author SANCHEZ NAVARRO, JESUS ANGEL es_ES
dc.contributor.author Pallás Benet, Vicente es_ES
dc.contributor.author Candresse, T. es_ES
dc.date.accessioned 2020-11-17T04:33:14Z
dc.date.available 2020-11-17T04:33:14Z
dc.date.issued 2017-09 es_ES
dc.identifier.issn 0003-4746 es_ES
dc.identifier.uri http://hdl.handle.net/10251/155139
dc.description.abstract [EN] The stone fruit genus Prunus, within the family Rosaceae, comprises more than 230 species, some of which have great importance or value as ornamental or fruit crops. Prunus are affected by numerous viruses and viroids linked to the vegetative propagation practices in many of the cultivated species. To date, 44 viruses and three viroids have been described in the 9 main cultivated Prunus species. Seven of these viruses and one viroid have been identified in Prunus hosts within the last 5 years. This work addresses recent advances and prospects in the study of viruses and viroids affecting Prunus species, mostly concerning the detection and characterisation of the agents involved, pathogenesis analysis and the search for new control tools. New sequencing technologies are quickly reshaping the way we can identify and characterise new plant viruses and isolates. Specific efforts aimed at virus identification or data mining of high-throughput sequencing data generated for plant genomics-oriented purposes can efficiently reveal the presence of known or novel viruses. These technologies have also been used to gain a deeper knowledge of the pathogenesis mechanisms at the gene and miRNA expression level that underlie the interactions between Prunus spp. and their main viruses and viroids. New biotechnological control tools include the transfer of resistance by grafting, the use of new sources of resistance and the development of gene silencing strategies using genetic transformation. In addition, the application of next generation sequencing and genome editing techniques will contribute to improving our knowledge of virus¿host interactions and the mechanisms of resistance. This should be of great interest in the search to obtain new Prunus cultivars capable of dealing both with known viruses and viroids and with those that are yet to be discovered in the uncertain scenario of climate change. es_ES
dc.description.sponsorship The authors offer grateful thanks to Spanish Ministry of Economy and Competitiveness for the Ramon y Cajal contract (RYC-2013-12563) of Dr. Manuel Rubio. This study has been supported by the projects 'Molecular and Genetic bases of multiple resistance to Plum pox virus (PPV) and Apple chlorotic leaf spot virus (ACLSV) in apricot' (AGL2015-68021-R) from the Spanish Ministry of Economy and Competiveness and 'Breeding stone fruit species assisted by molecular tools' from the Seneca Foundation of the Region of Murcia (19879/GERM/15). es_ES
dc.language Inglés es_ES
dc.publisher Blackwell Publishing es_ES
dc.relation.ispartof Annals of Applied Biology es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Ampelovirus es_ES
dc.subject Avsunviroidae es_ES
dc.subject Breeding es_ES
dc.subject Capillovirus es_ES
dc.subject Characterisation es_ES
dc.subject Cheravirus es_ES
dc.subject Control es_ES
dc.subject Detection es_ES
dc.subject Foveavirus es_ES
dc.subject Llarvirus es_ES
dc.subject Nepovirus es_ES
dc.subject New generation sequencing es_ES
dc.subject Ourmiavirus es_ES
dc.subject Pospiviroidae es_ES
dc.subject Potyvirus es_ES
dc.subject Prunus es_ES
dc.subject Resistance es_ES
dc.subject Tombusvirus es_ES
dc.subject Transmission es_ES
dc.subject Trichovirus es_ES
dc.title Recent advances and prospects in Prunus virology es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1111/aab.12371 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//RYC-2013-12563/ES/RYC-2013-12563/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//AGL2015-68021-R/ES/BASES GENETICAS Y MOLECULARES DE LA RESISTENCIA MULTIPLE A PLUM POX VIRUS (PPV, SHARKA) Y APPLE CHLOROTIC LEAF SPOT VIRUS (ACLSV, VIRUELA) EN ALBARICOQUERO/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/f SéNeCa//19879%2FGERM%2F15/ es_ES
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes es_ES
dc.description.bibliographicCitation Rubio, M.; Martinez-Gomez, P.; Marais, A.; Sanchez Navarro, JA.; Pallás Benet, V.; Candresse, T. (2017). Recent advances and prospects in Prunus virology. Annals of Applied Biology. 171(2):125-138. https://doi.org/10.1111/aab.12371 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1111/aab.12371 es_ES
dc.description.upvformatpinicio 125 es_ES
dc.description.upvformatpfin 138 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 171 es_ES
dc.description.issue 2 es_ES
dc.relation.pasarela S\356546 es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.contributor.funder Fundación Séneca-Agencia de Ciencia y Tecnología de la Región de Murcia es_ES
dc.description.references Angelova L. Stoev A. Borisova E. Avramov L. 2017 Proceedings of SPIE 10226, 19th International Conference and School on Quantum Electronics: Laser Physics and Applications, 1022614 https://doi.org/10.1117/12.2261807 es_ES
dc.description.references Babu, M., Griffiths, J. S., Huang, T.-S., & Wang, A. (2008). Altered gene expression changes in Arabidopsis leaf tissues and protoplasts in response to Plum pox virus infection. BMC Genomics, 9(1), 325. doi:10.1186/1471-2164-9-325 es_ES
dc.description.references Bag, S., Al Rwahnih, M., Li, A., Gonzalez, A., Rowhani, A., Uyemoto, J. K., & Sudarshana, M. R. (2015). Detection of a New Luteovirus in Imported Nectarine Trees: A Case Study to Propose Adoption of Metagenomics in Post-Entry Quarantine. Phytopathology®, 105(6), 840-846. doi:10.1094/phyto-09-14-0262-r es_ES
dc.description.references Barba, M., Czosnek, H., & Hadidi, A. (2014). Historical Perspective, Development and Applications of Next-Generation Sequencing in Plant Virology. Viruses, 6(1), 106-136. doi:10.3390/v6010106 es_ES
dc.description.references Barba, M., Ilardi, V., & Pasquini, G. (2015). Control of Pome and Stone Fruit Virus Diseases. Control of Plant Virus Diseases - Vegetatively-Propagated Crops, 47-83. doi:10.1016/bs.aivir.2014.11.001 es_ES
dc.description.references Candresse T. Martínez-Gómez P. Rubio M. 2015 XXIII International Conference on Virus and Other Graft Transmissible Diseases of Fruit Crops es_ES
dc.description.references Chirkov, S., Ivanov, P., & Sheveleva, A. (2013). Detection and partial molecular characterization of atypical plum pox virus isolates from naturally infected sour cherry. Archives of Virology, 158(6), 1383-1387. doi:10.1007/s00705-013-1630-x es_ES
dc.description.references Chirkov, S., Ivanov, P., Sheveleva, A., Zakubanskiy, A., & Osipov, G. (2017). New highly divergent Plum pox virus isolates infecting sour cherry in Russia. Virology, 502, 56-62. doi:10.1016/j.virol.2016.12.016 es_ES
dc.description.references Clemente-Moreno, M. J., Hernández, J. A., & Diaz-Vivancos, P. (2014). Sharka: how do plants respond to Plum pox virus infection? Journal of Experimental Botany, 66(1), 25-35. doi:10.1093/jxb/eru428 es_ES
dc.description.references García, J. A., Glasa, M., Cambra, M., & Candresse, T. (2014). Plum pox virusand sharka: a model potyvirus and a major disease. Molecular Plant Pathology, 15(3), 226-241. doi:10.1111/mpp.12083 es_ES
dc.description.references Glasa, M., Prikhodko, Y., Predajňa, L., Nagyová, A., Shneyder, Y., Zhivaeva, T., … Candresse, T. (2013). Characterization of Sour Cherry Isolates of Plum pox virus from the Volga Basin in Russia Reveals a New Cherry Strain of the Virus. Phytopathology®, 103(9), 972-979. doi:10.1094/phyto-11-12-0285-r es_ES
dc.description.references Hadidi, A., Barba, M., Candresse, T., & Jelkmann, W. (Eds.). (2011). Virus and Virus-Like Diseases of Pome and Stone Fruits. doi:10.1094/9780890545010 es_ES
dc.description.references Hadidi, A., Flores, R., Candresse, T., & Barba, M. (2016). Next-Generation Sequencing and Genome Editing in Plant Virology. Frontiers in Microbiology, 7. doi:10.3389/fmicb.2016.01325 es_ES
dc.description.references Herranz, M. C., Niehl, A., Rosales, M., Fiore, N., Zamorano, A., Granell, A., & Pallas, V. (2013). A remarkable synergistic effect at the transcriptomic level in peach fruits doubly infected by prunus necrotic ringspot virus and peach latent mosaic viroid. Virology Journal, 10(1). doi:10.1186/1743-422x-10-164 es_ES
dc.description.references Ilardi, V., & Tavazza, M. (2015). Biotechnological strategies and tools for Plum pox virus resistance: trans-, intra-, cis-genesis, and beyond. Frontiers in Plant Science, 6. doi:10.3389/fpls.2015.00379 es_ES
dc.description.references James, D., Varga, A., & Lye, D. (2014). Analysis of the complete genome of a virus associated with twisted leaf disease of cherry reveals evidence of a close relationship to unassigned viruses in the family Betaflexiviridae. Archives of Virology, 159(9), 2463-2468. doi:10.1007/s00705-014-2075-6 es_ES
dc.description.references Jung, S., Jiwan, D., Cho, I., Lee, T., Abbott, A., Sosinski, B., & Main, D. (2009). Synteny of Prunus and other model plant species. BMC Genomics, 10(1), 76. doi:10.1186/1471-2164-10-76 es_ES
dc.description.references Lenz, O., Přibylová, J., Fránová, J., Koloniuk, I., & Špak, J. (2016). Identification and characterization of a new member of the genus Luteovirus from cherry. Archives of Virology, 162(2), 587-590. doi:10.1007/s00705-016-3125-z es_ES
dc.description.references Lin, L., Li, R., Bateman, M., Mock, R., & Kinard, G. (2013). Development of a multiplex TaqMan real-time RT-PCR assay for simultaneous detection of Asian prunus viruses, plum bark necrosis stem pitting associated virus, and peach latent mosaic viroid. European Journal of Plant Pathology, 137(4), 797-804. doi:10.1007/s10658-013-0289-1 es_ES
dc.description.references Marais, A., Svanella-Dumas, L., Barone, M., Gentit, P., Faure, C., Charlot, G., … Candresse, T. (2011). Development of a polyvalent RT-PCR detection assay covering the genetic diversity of Cherry capillovirus A. Plant Pathology, 61(1), 195-204. doi:10.1111/j.1365-3059.2011.02488.x es_ES
dc.description.references Marais, A., Faure, C., Couture, C., Bergey, B., Gentit, P., & Candresse, T. (2014). Characterization by Deep Sequencing of Divergent Plum bark necrosis stem pitting-associated virus (PBNSPaV) Isolates and Development of a Broad-Spectrum PBNSPaV Detection Assay. Phytopathology®, 104(6), 660-666. doi:10.1094/phyto-08-13-0229-r es_ES
dc.description.references Marais, A., Faure, C., Mustafayev, E., & Candresse, T. (2015). Characterization of New Isolates of Apricot vein clearing-associated virus and of a New Prunus-Infecting Virus: Evidence for Recombination as a Driving Force in Betaflexiviridae Evolution. PLOS ONE, 10(6), e0129469. doi:10.1371/journal.pone.0129469 es_ES
dc.description.references Marais, A., Faure, C., Mustafayev, E., Barone, M., Alioto, D., & Candresse, T. (2015). Characterization by Deep Sequencing of Prunus virus T, a Novel Tepovirus Infecting Prunus Species. Phytopathology®, 105(1), 135-140. doi:10.1094/phyto-04-14-0125-r es_ES
dc.description.references Marais, A., Faure, C., Theil, S., Svanella-Dumas, L., Brans, Y., Maurice, I., … Candresse, T. (2016). First Report of Little cherry virus 1 on Plum in France. Plant Disease, 100(12), 2544. doi:10.1094/pdis-06-16-0915-pdn es_ES
dc.description.references Martínez-Gómez, P. (2003). Euphytica, 131(3), 313-322. doi:10.1023/a:1024028518263 es_ES
dc.description.references Martínez-Gómez, P., Rubio, M., Dicenta, F., & Gradziel, T. M. (2004). Resistance to Plum Pox Virus (Dideron Isolate RB3.30) in a Group of California Almonds and Transfer of Resistance to Peach. Journal of the American Society for Horticultural Science, 129(4), 544-548. doi:10.21273/jashs.129.4.0544 es_ES
dc.description.references Martínez-Gómez, P., Crisosto, C. H., Bonghi, C., & Rubio, M. (2011). New approaches to Prunus transcriptome analysis. Genetica, 139(6), 755-769. doi:10.1007/s10709-011-9580-2 es_ES
dc.description.references Massart, S., Olmos, A., Jijakli, H., & Candresse, T. (2014). Current impact and future directions of high throughput sequencing in plant virus diagnostics. Virus Research, 188, 90-96. doi:10.1016/j.virusres.2014.03.029 es_ES
dc.description.references Massart, S., Candresse, T., Gil, J., Lacomme, C., Predajna, L., Ravnikar, M., … Wetzel, T. (2017). A Framework for the Evaluation of Biosecurity, Commercial, Regulatory, and Scientific Impacts of Plant Viruses and Viroids Identified by NGS Technologies. Frontiers in Microbiology, 8. doi:10.3389/fmicb.2017.00045 es_ES
dc.description.references Matic, S., Minafra, A., Sánchez-Navarro, J. A., Pallás, V., Myrta, A., & Martelli, G. P. (2009). ‘Kwanzan Stunting’ syndrome: Detection and molecular characterization of an Italian isolate of Little cherry virus 1. Virus Research, 143(1), 61-67. doi:10.1016/j.virusres.2009.03.005 es_ES
dc.description.references Navarro, B., Gisel, A., Rodio, M. E., Delgado, S., Flores, R., & Di Serio, F. (2012). Small RNAs containing the pathogenic determinant of a chloroplast-replicating viroid guide the degradation of a host mRNA as predicted by RNA silencing. The Plant Journal, 70(6), 991-1003. doi:10.1111/j.1365-313x.2012.04940.x es_ES
dc.description.references Pallas, V., Aparicio, F., Herranz, M. C., Amari, K., Sanchez-Pina, M. A., Myrta, A., & Sanchez-Navarro, J. A. (2012). Ilarviruses of Prunus spp.: A Continued Concern for Fruit Trees. Phytopathology®, 102(12), 1108-1120. doi:10.1094/phyto-02-12-0023-rvw es_ES
dc.description.references Pallas, V., Aparicio, F., Herranz, M. C., Sanchez-Navarro, J. A., & Scott, S. W. (2013). The Molecular Biology of Ilarviruses. Advances in Virus Research, 139-181. doi:10.1016/b978-0-12-407698-3.00005-3 es_ES
dc.description.references Peiró, A., Pallás, V., & Sánchez-Navarro, J. Á. (2011). Simultaneous detection of eight viruses and two viroids affecting stone fruit trees by using a unique polyprobe. European Journal of Plant Pathology, 132(4), 469-475. doi:10.1007/s10658-011-9893-0 es_ES
dc.description.references Postnikova, O. A., & Nemchinov, L. G. (2012). Comparative analysis of microarray data in Arabidopsis transcriptome during compatible interactions with plant viruses. Virology Journal, 9(1). doi:10.1186/1743-422x-9-101 es_ES
dc.description.references Revers, F., & García, J. A. (2015). Molecular Biology of Potyviruses. Advances in Virus Research, 101-199. doi:10.1016/bs.aivir.2014.11.006 es_ES
dc.description.references Rodamilans, B., San León, D., Mühlberger, L., Candresse, T., Neumüller, M., Oliveros, J. C., & García, J. A. (2014). Transcriptomic Analysis of Prunus domestica Undergoing Hypersensitive Response to Plum Pox Virus Infection. PLoS ONE, 9(6), e100477. doi:10.1371/journal.pone.0100477 es_ES
dc.description.references Rubio, M., Pascal, T., Bachellez, A., & Lambert, P. (2009). Quantitative trait loci analysis of Plum pox virus resistance in Prunus davidiana P1908: new insights on the organization of genomic resistance regions. Tree Genetics & Genomes, 6(2), 291-304. doi:10.1007/s11295-009-0249-2 es_ES
dc.description.references Rubio, M., García-Ibarra, A., Dicenta, F., & Martínez-Gómez, P. (2010). Plum pox virus (sharka) sensitivity in Prunus salicina and Prunus cerasifera cultivars against a Dideron-type isolate. Plant Breeding, 130(2), 283-286. doi:10.1111/j.1439-0523.2010.01813.x es_ES
dc.description.references Rubio, M., Martínez-Gómez, P., García-Brunton, J., Pascal, T., García-Ibarra, A., & Dicenta, F. (2012). Sensitivity of peach cultivars against a Dideron isolate of Plum pox virus. Scientia Horticulturae, 144, 81-86. doi:10.1016/j.scienta.2012.06.038 es_ES
dc.description.references Rubio, M., Rodríguez-Moreno, L., Ballester, A. R., de Moura, M. C., Bonghi, C., Candresse, T., & Martínez-Gómez, P. (2014). Analysis of gene expression changes in peach leaves in response toPlum pox virusinfection using RNA-Seq. Molecular Plant Pathology, 16(2), 164-176. doi:10.1111/mpp.12169 es_ES
dc.description.references Rubio, M., Ballester, A. R., Olivares, P. M., Castro de Moura, M., Dicenta, F., & Martínez-Gómez, P. (2015). Gene Expression Analysis of Plum pox virus (Sharka) Susceptibility/Resistance in Apricot (Prunus armeniaca L.). PLOS ONE, 10(12), e0144670. doi:10.1371/journal.pone.0144670 es_ES
dc.description.references Rubio, M., Gómez, E. M., Martínez-Gómez, P., & Dicenta, F. (2015). Behaviour of Apricot Cultivars Against Hop Stunt Viroid. Journal of Phytopathology, 164(3), 193-197. doi:10.1111/jph.12407 es_ES
dc.description.references SCHOLTHOF, K.-B. G., ADKINS, S., CZOSNEK, H., PALUKAITIS, P., JACQUOT, E., HOHN, T., … FOSTER, G. D. (2011). Top 10 plant viruses in molecular plant pathology. Molecular Plant Pathology, 12(9), 938-954. doi:10.1111/j.1364-3703.2011.00752.x es_ES
dc.description.references Velasco, D., Hough, J., Aradhya, M., & Ross-Ibarra, J. (2016). Evolutionary Genomics of Peach and Almond Domestication. G3 Genes|Genomes|Genetics, 6(12), 3985-3993. doi:10.1534/g3.116.032672 es_ES
dc.description.references Villamor, D. E. V., Susaimuthu, J., & Eastwell, K. C. (2015). Genomic Analyses of Cherry Rusty Mottle Group and Cherry Twisted Leaf-Associated Viruses Reveal a Possible New Genus Within the FamilyBetaflexiviridae. Phytopathology®, 105(3), 399-408. doi:10.1094/phyto-03-14-0066-r es_ES
dc.description.references Walia, Y., Dhir, S., Bhadoria, S., Hallan, V., & Zaidi, A. A. (2011). Molecular characterization of Apple scar skin viroid from Himalayan wild cherry. Forest Pathology, 42(1), 84-87. doi:10.1111/j.1439-0329.2011.00723.x es_ES
dc.description.references Wang, A. (2015). Dissecting the Molecular Network of Virus-Plant Interactions: The Complex Roles of Host Factors. Annual Review of Phytopathology, 53(1), 45-66. doi:10.1146/annurev-phyto-080614-120001 es_ES
dc.description.references Wang, Z., Gerstein, M., & Snyder, M. (2009). RNA-Seq: a revolutionary tool for transcriptomics. Nature Reviews Genetics, 10(1), 57-63. doi:10.1038/nrg2484 es_ES
dc.description.references Wang, X., Kohalmi, S. E., Svircev, A., Wang, A., Sanfaçon, H., & Tian, L. (2013). Silencing of the Host Factor eIF(iso)4E Gene Confers Plum Pox Virus Resistance in Plum. PLoS ONE, 8(1), e50627. doi:10.1371/journal.pone.0050627 es_ES
dc.description.references Willner, D., Thurber, R. V., & Rohwer, F. (2009). Metagenomic signatures of 86 microbial and viral metagenomes. Environmental Microbiology, 11(7), 1752-1766. doi:10.1111/j.1462-2920.2009.01901.x es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem