Mostrar el registro sencillo del ítem
dc.contributor.author | Santiago-Portillo, Andrea | es_ES |
dc.contributor.author | Cabrero-Antonino, Maria | es_ES |
dc.contributor.author | Alvaro Rodríguez, Maria Mercedes | es_ES |
dc.contributor.author | Navalón Oltra, Sergio | es_ES |
dc.contributor.author | García Gómez, Hermenegildo | es_ES |
dc.date.accessioned | 2020-11-18T04:31:25Z | |
dc.date.available | 2020-11-18T04:31:25Z | |
dc.date.issued | 2019-07-11 | es_ES |
dc.identifier.issn | 0947-6539 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/155238 | |
dc.description | This is the peer reviewed version of the following article: Chem. Eur. J. 2019, 25, 9280 9286, which has been published in final form at https://doi.org/10.1002/chem.201901361. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving. | es_ES |
dc.description.abstract | [EN] This manuscript reports a comparative study of the catalytic performance of gold nanoparticles (NPs) encapsulated within MIL-101(Cr) with or without amino groups in the terephthalate linker. The purpose is to show how the amino groups can influence the microenvironment and catalytic stability of incorporated gold nanoparticles. The first influence of the presence of this substituent is the smaller particle size of Au NPs hosted in MIL-101(Cr)-NH2 (2.45 +/- 0.19 nm) compared with the parent MIL-101(Cr)-H (3.02 +/- 0.39 nm). Both materials are highly active to promote the aerobic alcohol oxidation and exhibit a wide substrate scope. Although both catalysts can achieve turnover numbers as high as 10(6) for the solvent-free aerobic oxidation of benzyl alcohol, Au@MIL-101(Cr)-NH2 exhibits higher turnover frequency values (12 000 h(-1)) than Au@MIL-101(Cr)-H (6800 h(-1)). Au@MIL-101(Cr)-NH2 also exhibits higher catalytic stability, being recyclable for 20 times with coincident temporal conversion profiles, in comparison with some decay observed in the parent Au@MIL-101(Cr)-H. Characterization by transmission electron microscopy of the 20-times used samples shows a very minor particle size increase in the case of Au@MIL-101(Cr)-NH2 (2.97 +/- 0.27 nm) in comparison with the Au@MIL-101(Cr)-H analog (5.32 +/- 0.72 nm). The data presented show the potential of better control of the microenvironment to improve the performance of encapsulated Au nanoparticles. | es_ES |
dc.description.sponsorship | Financial support by the Spanish Ministry of Economy and Competitiveness (Severo Ochoa, CTQ2015-65963-CQ-R1 and CTQ2014-53292-R) is gratefully acknowledged. Generalidad Valenciana is also thanked for funding (Prometeo 2017/083). S.N. thanks financial support by the Fundación Ramón Areces (XVIII Concurso Nacional para la Adjudicación de Ayudas a la Investigación en Ciencias de la Vida y de la Materia, 2016). | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | John Wiley & Sons | es_ES |
dc.relation.ispartof | Chemistry - A European Journal | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Aerobic oxidation | es_ES |
dc.subject | Alcohol oxidation | es_ES |
dc.subject | Gold catalysis | es_ES |
dc.subject | Heterogeneous catalysis | es_ES |
dc.subject | MIL-101(Cr)-NH2 | es_ES |
dc.subject.classification | QUIMICA ORGANICA | es_ES |
dc.title | Tuning the Microenvironment of Gold Nanoparticles Encapsulated within MIL-101(Cr) for the Selective Oxidation of Alcohols with O-2: Influence of the Amino Terephthalate Linker | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1002/chem.201901361 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//CTQ2014-53292-R/ES/MATERIALES GRAFENICOS COMO CATALIZADORES PARA REACCIONES ORGANICAS./ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//CTQ2015-69153-C2-1-R/ES/EXPLOTANDO EL USO DEL GRAFENO EN CATALISIS. USO DEL GRAFENO COMO CARBOCATALIZADOR O COMO SOPORTE/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//PROMETEO%2F2017%2F083/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Química - Departament de Química | es_ES |
dc.description.bibliographicCitation | Santiago-Portillo, A.; Cabrero-Antonino, M.; Alvaro Rodríguez, MM.; Navalón Oltra, S.; García Gómez, H. (2019). Tuning the Microenvironment of Gold Nanoparticles Encapsulated within MIL-101(Cr) for the Selective Oxidation of Alcohols with O-2: Influence of the Amino Terephthalate Linker. Chemistry - A European Journal. 25(39):9280-9286. https://doi.org/10.1002/chem.201901361 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1002/chem.201901361 | es_ES |
dc.description.upvformatpinicio | 9280 | es_ES |
dc.description.upvformatpfin | 9286 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 25 | es_ES |
dc.description.issue | 39 | es_ES |
dc.identifier.pmid | 31063224 | es_ES |
dc.relation.pasarela | S\398873 | es_ES |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.contributor.funder | Fundación Ramón Areces | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.description.references | H�ft, E., Kosslick, H., Fricke, R., & Hamann, H.-J. (1996). Titanhaltige Molekularsiebe als Katalysatoren f�r selektive Oxidationsreaktionen mit Wasserstoffperoxid. Journal f�r Praktische Chemie/Chemiker-Zeitung, 338(1), 1-15. doi:10.1002/prac.19963380102 | es_ES |
dc.description.references | Matsumoto, T., Ueno, M., Wang, N., & Kobayashi, S. (2008). Recent Advances in Immobilized Metal Catalysts for Environmentally Benign Oxidation of Alcohols. Chemistry - An Asian Journal, 3(2), 196-214. doi:10.1002/asia.200700359 | es_ES |
dc.description.references | Saikia, M., Bhuyan, D., & Saikia, L. (2015). Facile synthesis of Fe3O4nanoparticles on metal organic framework MIL-101(Cr): characterization and catalytic activity. New Journal of Chemistry, 39(1), 64-67. doi:10.1039/c4nj01312c | es_ES |
dc.description.references | Corma, A., & Garcia, H. (2008). Supported gold nanoparticles as catalysts for organic reactions. Chemical Society Reviews, 37(9), 2096. doi:10.1039/b707314n | es_ES |
dc.description.references | Parmeggiani, C., & Cardona, F. (2012). Transition metal based catalysts in the aerobic oxidation of alcohols. Green Chemistry, 14(3), 547. doi:10.1039/c2gc16344f | es_ES |
dc.description.references | Stahl, S. S. (2004). Palladium Oxidase Catalysis: Selective Oxidation of Organic Chemicals by Direct Dioxygen-Coupled Turnover. Angewandte Chemie International Edition, 43(26), 3400-3420. doi:10.1002/anie.200300630 | es_ES |
dc.description.references | Dhakshinamoorthy, A., & Garcia, H. (2012). Catalysis by metal nanoparticles embedded on metal–organic frameworks. Chemical Society Reviews, 41(15), 5262. doi:10.1039/c2cs35047e | es_ES |
dc.description.references | Alhumaimess, M., Lin, Z., He, Q., Lu, L., Dimitratos, N., Dummer, N. F., … Hutchings, G. J. (2014). Oxidation of Benzyl Alcohol and Carbon Monoxide Using Gold Nanoparticles Supported on MnO2Nanowire Microspheres. Chemistry - A European Journal, 20(6), 1701-1710. doi:10.1002/chem.201303355 | es_ES |
dc.description.references | Buonerba, A., Cuomo, C., Ortega Sánchez, S., Canton, P., & Grassi, A. (2011). Gold Nanoparticles Incarcerated in Nanoporous Syndiotactic Polystyrene Matrices as New and Efficient Catalysts for Alcohol Oxidations. Chemistry - A European Journal, 18(2), 709-715. doi:10.1002/chem.201101034 | es_ES |
dc.description.references | Costa, V. V., Estrada, M., Demidova, Y., Prosvirin, I., Kriventsov, V., Cotta, R. F., … Gusevskaya, E. V. (2012). Gold nanoparticles supported on magnesium oxide as catalysts for the aerobic oxidation of alcohols under alkali-free conditions. Journal of Catalysis, 292, 148-156. doi:10.1016/j.jcat.2012.05.009 | es_ES |
dc.description.references | Zhang, W., Xiao, Z., Wang, J., Fu, W., Tan, R., & Yin, D. (2019). Selective Aerobic Oxidation of Alcohols over Gold‐Palladium Alloy Catalysts Using Air at Atmospheric Pressure in Water. ChemCatChem, 11(6), 1779-1788. doi:10.1002/cctc.201900015 | es_ES |
dc.description.references | Liu, X. Y., Wang, A., Zhang, T., & Mou, C.-Y. (2013). Catalysis by gold: New insights into the support effect. Nano Today, 8(4), 403-416. doi:10.1016/j.nantod.2013.07.005 | es_ES |
dc.description.references | Navalon, S., Dhakshinamoorthy, A., Alvaro, M., & Garcia, H. (2016). Metal nanoparticles supported on two-dimensional graphenes as heterogeneous catalysts. Coordination Chemistry Reviews, 312, 99-148. doi:10.1016/j.ccr.2015.12.005 | es_ES |
dc.description.references | Dhakshinamoorthy, A., Asiri, A. M., & Garcia, H. (2017). Metal Organic Frameworks as Versatile Hosts of Au Nanoparticles in Heterogeneous Catalysis. ACS Catalysis, 7(4), 2896-2919. doi:10.1021/acscatal.6b03386 | es_ES |
dc.description.references | Howarth, A. J., Liu, Y., Li, P., Li, Z., Wang, T. C., Hupp, J. T., & Farha, O. K. (2016). Chemical, thermal and mechanical stabilities of metal–organic frameworks. Nature Reviews Materials, 1(3). doi:10.1038/natrevmats.2015.18 | es_ES |
dc.description.references | Lee, J., Farha, O. K., Roberts, J., Scheidt, K. A., Nguyen, S. T., & Hupp, J. T. (2009). Metal–organic framework materials as catalysts. Chemical Society Reviews, 38(5), 1450. doi:10.1039/b807080f | es_ES |
dc.description.references | Leus, K., Concepcion, P., Vandichel, M., Meledina, M., Grirrane, A., Esquivel, D., … Van Der Voort, P. (2015). Au@UiO-66: a base free oxidation catalyst. RSC Advances, 5(29), 22334-22342. doi:10.1039/c4ra16800c | es_ES |
dc.description.references | Saikia, M., Kaichev, V., & Saikia, L. (2016). Gold nanoparticles supported on nanoscale amine-functionalized MIL-101(Cr) as a highly active catalyst for epoxidation of styrene. RSC Advances, 6(108), 106856-106865. doi:10.1039/c6ra24458k | es_ES |
dc.description.references | Liu, H., Liu, Y., Li, Y., Tang, Z., & Jiang, H. (2010). Metal−Organic Framework Supported Gold Nanoparticles as a Highly Active Heterogeneous Catalyst for Aerobic Oxidation of Alcohols. The Journal of Physical Chemistry C, 114(31), 13362-13369. doi:10.1021/jp105666f | es_ES |
dc.description.references | Lammert, M., Bernt, S., Vermoortele, F., De Vos, D. E., & Stock, N. (2013). Single- and Mixed-Linker Cr-MIL-101 Derivatives: A High-Throughput Investigation. Inorganic Chemistry, 52(15), 8521-8528. doi:10.1021/ic4005328 | es_ES |
dc.description.references | Zhu, Q.-L., Li, J., & Xu, Q. (2013). Immobilizing Metal Nanoparticles to Metal–Organic Frameworks with Size and Location Control for Optimizing Catalytic Performance. Journal of the American Chemical Society, 135(28), 10210-10213. doi:10.1021/ja403330m | es_ES |
dc.description.references | Chen, Y. F., Babarao, R., Sandler, S. I., & Jiang, J. W. (2010). Metal−Organic Framework MIL-101 for Adsorption and Effect of Terminal Water Molecules: From Quantum Mechanics to Molecular Simulation. Langmuir, 26(11), 8743-8750. doi:10.1021/la904502h | es_ES |
dc.description.references | Ferey, G. (2005). A Chromium Terephthalate-Based Solid with Unusually Large Pore Volumes and Surface Area. Science, 309(5743), 2040-2042. doi:10.1126/science.1116275 | es_ES |
dc.description.references | Santiago-Portillo, A., Navalón, S., Cirujano, F. G., Xamena, F. X. L. i, Alvaro, M., & Garcia, H. (2015). MIL-101 as Reusable Solid Catalyst for Autoxidation of Benzylic Hydrocarbons in the Absence of Additional Oxidizing Reagents. ACS Catalysis, 5(6), 3216-3224. doi:10.1021/acscatal.5b00411 | es_ES |
dc.description.references | Buxton, G. V., Greenstock, C. L., Helman, W. P., & Ross, A. B. (1988). Critical Review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (⋅OH/⋅O− in Aqueous Solution. Journal of Physical and Chemical Reference Data, 17(2), 513-886. doi:10.1063/1.555805 | es_ES |
dc.description.references | Clifton, C. L., & Huie, R. E. (1989). Rate constants for hydrogen abstraction reactions of the sulfate radical, SO4?. Alcohols. International Journal of Chemical Kinetics, 21(8), 677-687. doi:10.1002/kin.550210807 | es_ES |
dc.description.references | Dhakshinamoorthy, A., Asiri, A. M., & Garcia, H. (2017). Tuneable nature of metal organic frameworks as heterogeneous solid catalysts for alcohol oxidation. Chemical Communications, 53(79), 10851-10869. doi:10.1039/c7cc05927b | es_ES |
dc.description.references | Cancino, P., Vega, A., Santiago-Portillo, A., Navalon, S., Alvaro, M., Aguirre, P., … García, H. (2016). A novel copper(ii)–lanthanum(iii) metal organic framework as a selective catalyst for the aerobic oxidation of benzylic hydrocarbons and cycloalkenes. Catalysis Science & Technology, 6(11), 3727-3736. doi:10.1039/c5cy01448d | es_ES |
dc.description.references | Gómez-Paricio, A., Santiago-Portillo, A., Navalón, S., Concepción, P., Alvaro, M., & Garcia, H. (2016). MIL-101 promotes the efficient aerobic oxidative desulfurization of dibenzothiophenes. Green Chemistry, 18(2), 508-515. doi:10.1039/c5gc00862j | es_ES |