Mostrar el registro sencillo del ítem
dc.contributor.author | Jiménez, Javier | es_ES |
dc.contributor.author | Blasco, Sonia | es_ES |
dc.contributor.author | Blanco, Elias | es_ES |
dc.contributor.author | Atienzar Corvillo, Pedro Enrique | es_ES |
dc.contributor.author | del Pozo, María | es_ES |
dc.contributor.author | Quintana, Carmen | es_ES |
dc.date.accessioned | 2020-11-19T04:31:55Z | |
dc.date.available | 2020-11-19T04:31:55Z | |
dc.date.issued | 2019-06-28 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/155301 | |
dc.description | This is the peer reviewed version of the following article: ChemistrySelect 2019, 4, 7036 7041, which has been published in final form at https://doi.org/10.1002/slct.201901127. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving. | es_ES |
dc.description.abstract | [EN] A novel optical sensor, based on the use of the macrocyclic receptor cucurbit[7]uril as molecular selector taking part of a sensing poly(vinyl chloride)-based membrane immobilized onto a quartz slide surface, has been developed and tested to thiabendazole analysis. The method is built upon the increase of the thiabendazole fluorescence as a result of the supramolecular recognition event. Variables involved in the membrane construction and fluorescence measurements have been evaluated and optimized. The sensing membrane is prepared by a spin-coating procedure (1 min at 800 r.p.m.). An increase of more than 2 fold in the fluorescence signal is observed when the supramolecular complex is immobilized into the membrane respect to that observed for the free guest. Under optimized conditions, the dispositive responds in a few seconds to thiabendazole concentrations at 10(-7) M level. In addition, the characterization of the supramolecular complex together with lifetime measurements is included. | es_ES |
dc.description.sponsorship | The authors would like to thank the Comunidad Autonoma de Madrid (P2018/NMT-4349, TRANSNANOAVANSENS-CM) for financial support. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | John Wiley & Sons | es_ES |
dc.relation.ispartof | ChemistrySelect | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Cucurbituril | es_ES |
dc.subject | Fungicide | es_ES |
dc.subject | Membrane | es_ES |
dc.subject | Sensors | es_ES |
dc.subject | Thiabendazole | es_ES |
dc.subject.classification | QUIMICA ORGANICA | es_ES |
dc.title | On-Surface Cucurbit[n]uril Supramolecular Recognition for an Optical Sensor Design | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1002/slct.201901127 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/CAM//P2018%2FNMT-4349/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química | es_ES |
dc.description.bibliographicCitation | Jiménez, J.; Blasco, S.; Blanco, E.; Atienzar Corvillo, PE.; Del Pozo, M.; Quintana, C. (2019). On-Surface Cucurbit[n]uril Supramolecular Recognition for an Optical Sensor Design. ChemistrySelect. 4(24):7036-7041. https://doi.org/10.1002/slct.201901127 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1002/slct.201901127 | es_ES |
dc.description.upvformatpinicio | 7036 | es_ES |
dc.description.upvformatpfin | 7041 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 4 | es_ES |
dc.description.issue | 24 | es_ES |
dc.identifier.eissn | 2365-6549 | es_ES |
dc.relation.pasarela | S\410846 | es_ES |
dc.contributor.funder | Comunidad de Madrid | es_ES |
dc.description.references | Montes-Navajas, P., Baumes, L. A., Corma, A., & Garcia, H. (2009). Dual-response colorimetric sensor array for the identification of amines in water based on supramolecular host–guest complexation. Tetrahedron Letters, 50(20), 2301-2304. doi:10.1016/j.tetlet.2009.02.189 | es_ES |
dc.description.references | Telting-Diaz, M., & Bakker, E. (2002). Mass-Produced Ionophore-Based Fluorescent Microspheres for Trace Level Determination of Lead Ions. Analytical Chemistry, 74(20), 5251-5256. doi:10.1021/ac025596i | es_ES |
dc.description.references | Uttam, B., Hussain, M. A., Joshi, S., & Rao, C. P. (2018). Physicochemical and Ion-Sensing Properties of Benzofurazan-Appended Calix[4]arene in Solution and on Gold Nanoparticles: Spectroscopy, Microscopy, and DFT Computations in Support of the Species of Recognition. ACS Omega, 3(12), 16989-16999. doi:10.1021/acsomega.8b02848 | es_ES |
dc.description.references | Shamsipur, M., Sadeghi, M., Beyzavi, M. H., & Sharghi, H. (2015). Development of a novel fluorimetric bulk optode membrane based on meso-tetrakis(2-hydroxynaphthyl) porphyrin (MTHNP) for highly sensitive and selective monitoring of trace amounts of Hg2+ ions. Materials Science and Engineering: C, 48, 424-433. doi:10.1016/j.msec.2014.12.030 | es_ES |
dc.description.references | Cano-Raya, C., Fernández-Ramos, M. D., Gómez-Sánchez, J., & Capitán-Vallvey, L. F. (2006). Irreversible optical sensor for mercury determination based on tetraarylborate decomposition. Sensors and Actuators B: Chemical, 117(1), 135-142. doi:10.1016/j.snb.2005.11.009 | es_ES |
dc.description.references | Sahari, A., Ruckh, T. T., Hutchings, R., & Clark, H. A. (2015). Development of an Optical Nanosensor Incorporating a pH-Sensitive Quencher Dye for Potassium Imaging. Analytical Chemistry, 87(21), 10684-10687. doi:10.1021/acs.analchem.5b03080 | es_ES |
dc.description.references | Assaf, K. I., & Nau, W. M. (2015). Cucurbiturils: from synthesis to high-affinity binding and catalysis. Chemical Society Reviews, 44(2), 394-418. doi:10.1039/c4cs00273c | es_ES |
dc.description.references | Ganguly, A., Ghosh, S., & Guchhait, N. (2016). Inclusion of an Anthracene-based Fluorophore within Molecular Containers: A Comparative Study of the Cucurbituril and Cyclodextrin Host Families. The Journal of Physical Chemistry B, 120(19), 4421-4430. doi:10.1021/acs.jpcb.6b04178 | es_ES |
dc.description.references | Rankin, M. A., & Wagner, B. D. (2004). Fluorescence Enhancement of Curcumin upon Inclusion into Cucurbituril. Supramolecular Chemistry, 16(7), 513-519. doi:10.1080/10610270412331283583 | es_ES |
dc.description.references | Geng, Q.-X., Cong, H., Tao, Z., Lindoy, L. F., & Wei, G. (2015). Cucurbit[7]uril-improved recognition by a fluorescent sensor for cadmium and zinc cations. Supramolecular Chemistry, 28(9-10), 784-791. doi:10.1080/10610278.2015.1117614 | es_ES |
dc.description.references | Smith, L. C., Leach, D. G., Blaylock, B. E., Ali, O. A., & Urbach, A. R. (2015). Sequence-Specific, Nanomolar Peptide Binding via Cucurbit[8]uril-Induced Folding and Inclusion of Neighboring Side Chains. Journal of the American Chemical Society, 137(10), 3663-3669. doi:10.1021/jacs.5b00718 | es_ES |
dc.description.references | Lazar, A. I., Biedermann, F., Mustafina, K. R., Assaf, K. I., Hennig, A., & Nau, W. M. (2016). Nanomolar Binding of Steroids to Cucurbit[n]urils: Selectivity and Applications. Journal of the American Chemical Society, 138(39), 13022-13029. doi:10.1021/jacs.6b07655 | es_ES |
dc.description.references | Del Pozo, M., Fernández, Á., & Quintana, C. (2018). On-line competitive host-guest interactions in a turn-on fluorometric method to amantadine determination in human serum and pharmaceutical formulations. Talanta, 179, 124-130. doi:10.1016/j.talanta.2017.10.064 | es_ES |
dc.description.references | Pozo, M. del, Blanco, E., Fatás, E., Hernández, P., & Quintana, C. (2012). New supramolecular interactions for electrochemical sensors development: different cucurbit[8]uril sensing platform designs. The Analyst, 137(18), 4302. doi:10.1039/c2an35325c | es_ES |
dc.description.references | Del Pozo, M., Hernández, P., Hernández, L., & Quintana, C. (2011). The use of cucurbit[8]uril host–guest interactions in the development of an electrochemical sensor: characterization and application to tryptophan determination. Journal of Materials Chemistry, 21(35), 13657. doi:10.1039/c1jm12063h | es_ES |
dc.description.references | Del Pozo, M., Mejías, J., Hernández, P., & Quintana, C. (2014). Cucurbit[8]uril-based electrochemical sensors as detectors in flow injection analysis. Application to dopamine determination in serum samples. Sensors and Actuators B: Chemical, 193, 62-69. doi:10.1016/j.snb.2013.11.074 | es_ES |
dc.description.references | Demets, G. J.-F., Schneider, B. V. S., Correia, H. D., Gonçalves, R. R., Nobre, T. M., & Darbello Zaniquelli, M. E. (2008). A Technique to Produce Thin Cucurbit[6]uril Films. Journal of Nanoscience and Nanotechnology, 8(1), 432-435. doi:10.1166/jnn.2008.051 | es_ES |
dc.description.references | Liu, M., Kan, J., Yao, Y., Zhang, Y., Bian, B., Tao, Z., … Xiao, X. (2019). Facile preparation and application of luminescent cucurbit[10]uril-based porous supramolecular frameworks. Sensors and Actuators B: Chemical, 283, 290-297. doi:10.1016/j.snb.2018.12.024 | es_ES |
dc.description.references | Nicolas, H., Yuan, B., Zhang, J., Zhang, X., & Schönhoff, M. (2015). Cucurbit[8]uril as Nanocontainer in a Polyelectrolyte Multilayer Film: A Quantitative and Kinetic Study of Guest Uptake. Langmuir, 31(39), 10734-10742. doi:10.1021/acs.langmuir.5b02806 | es_ES |
dc.description.references | Nicolas, H., Yuan, B., Zhang, X., & Schönhoff, M. (2016). Cucurbit[8]uril-Containing Multilayer Films for the Photocontrolled Binding and Release of a Guest Molecule. Langmuir, 32(10), 2410-2418. doi:10.1021/acs.langmuir.6b00128 | es_ES |
dc.description.references | Del Pozo, M., Alonso, M., Hernández, L., & Quintana, C. (2010). An Electrochemical Approach for the Cucurbit[7]uril/Carbendazim Supramolecular Inclusion Complex. Application to Carbendazim Determination in Apples. Electroanalysis, 23(1), 189-195. doi:10.1002/elan.201000442 | es_ES |
dc.description.references | Saleh, N., Koner, A. L., & Nau, W. M. (2008). Activation and Stabilization of Drugs by Supramolecular pKaShifts: Drug‐Delivery Applications Tailored for Cucurbiturils. Angewandte Chemie International Edition, 47(29), 5398-5401. doi:10.1002/anie.200801054 | es_ES |
dc.description.references | http://ec.europa.eu/food/plant/pesticides/eu-pesticides-database/; | es_ES |
dc.description.references | Yu, F., Su, M., Tian, L., Wang, H., & Liu, H. (2018). Organic Solvent as Internal Standards for Quantitative and High-Throughput Liquid Interfacial SERS Analysis in Complex Media. Analytical Chemistry, 90(8), 5232-5238. doi:10.1021/acs.analchem.8b00008 | es_ES |
dc.description.references | Chen, Q., Zuo, J., He, X., Mo, X., Tong, P., & Zhang, L. (2017). Enhanced fluorescence of terbium with thiabendazole and application in determining trace amounts of terbium and thiabendazole. Talanta, 162, 540-546. doi:10.1016/j.talanta.2016.10.036 | es_ES |
dc.description.references | ASGHAR, M., YAQOOB, M., MUNAWAR, N., & NABI, A. (2016). Flow-Injection Determination of Thiabendazole Fungicide in Water Samples Using a Diperiodatocuprate(III)–Sulfuric Acid–Chemiluminescence System. Analytical Sciences, 32(3), 337-342. doi:10.2116/analsci.32.337 | es_ES |
dc.description.references | Sousa, E. S., Pinto, L., & de Araujo, M. C. U. (2017). A chemometric cleanup using multivariate curve resolution in liquid chromatography: Quantification of pesticide residues in vegetables. Microchemical Journal, 134, 131-139. doi:10.1016/j.microc.2017.05.017 | es_ES |
dc.description.references | Oliveira, A. M., Loureiro, H. C., de Jesus, F. F. S., & de Jesus, D. P. (2017). Electromembrane extraction and preconcentration of carbendazim and thiabendazole in water samples before capillary electrophoresis analysis. Journal of Separation Science, 40(7), 1532-1539. doi:10.1002/jssc.201601305 | es_ES |
dc.description.references | Smitka, J., Lemos, A., Porel, M., Jockusch, S., Belderrain, T. R., Tesařová, E., & Da Silva, J. P. (2014). Phototransformation of benzimidazole and thiabendazole inside cucurbit[8]uril. Photochem. Photobiol. Sci., 13(2), 310-315. doi:10.1039/c3pp50336d | es_ES |
dc.description.references | Montes-Navajas, P., Corma, A., & Garcia, H. (2008). Complexation and Fluorescence of Tricyclic Basic Dyes Encapsulated in Cucurbiturils. ChemPhysChem, 9(5), 713-720. doi:10.1002/cphc.200700735 | es_ES |
dc.description.references | Shewale, M. N., Lande, D. N., & Gejji, S. P. (2016). Encapsulation of benzimidazole derivatives within cucurbit[7]uril: Density functional investigations. Journal of Molecular Liquids, 216, 309-317. doi:10.1016/j.molliq.2015.12.076 | es_ES |
dc.description.references | An, Q., Dong, C., Zhu, W., Tao, C., Yang, H., Wang, Y., & Li, G. (2012). Cucurbit[8]uril as Building Block for Facile Fabrication of Well-Defined Organic Crystalline Nano-objects with Multiple Morphologies and Compositions. Small, 8(4), 562-568. doi:10.1002/smll.201101933 | es_ES |