- -

Enhancement of the Electrochemical Properties of an Open-Pore Graphite Foam with Electrochemically Reduced Graphene Oxide and Alternating Current Dispersed Platinum Particles

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Enhancement of the Electrochemical Properties of an Open-Pore Graphite Foam with Electrochemically Reduced Graphene Oxide and Alternating Current Dispersed Platinum Particles

Show full item record

Fernández Sáez, J.; Bonastre Cano, JA.; Molina, JM.; Cases, F. (2020). Enhancement of the Electrochemical Properties of an Open-Pore Graphite Foam with Electrochemically Reduced Graphene Oxide and Alternating Current Dispersed Platinum Particles. Coatings. 10(6):1-12. https://doi.org/10.3390/coatings10060551

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/155302

Files in this item

Item Metadata

Title: Enhancement of the Electrochemical Properties of an Open-Pore Graphite Foam with Electrochemically Reduced Graphene Oxide and Alternating Current Dispersed Platinum Particles
Author: Fernández Sáez, Javier Bonastre Cano, José Antonio Molina, José Miguel Cases, Francisco
UPV Unit: Universitat Politècnica de València. Departamento de Ingeniería Textil y Papelera - Departament d'Enginyeria Tèxtil i Paperera
Issued date:
Abstract:
[EN] This paper aimed to improve the electrochemical activity of a pitch-derived open-pore graphite foam (GF) by an electrochemical coating of reduced graphene oxide (RGO) and platinum particles without significantly ...[+]
Subjects: Graphene oxide , Graphitized foam , 3D porous electrodes , Sinusoidal potential , Platinum coating
Copyrigths: Reconocimiento (by)
Source:
Coatings. (eissn: 2079-6412 )
DOI: 10.3390/coatings10060551
Publisher:
MDPI AG
Publisher version: https://doi.org/10.3390/coatings10060551
Project ID:
Agencia Estatal de Investigación/CTQ2017-90659-REDT
FEDER/MAT2016-77742-C2-2-P
AEI/MAT2016-77742-C2-1-P
Thanks:
This research was funded by the Spanish Agencia Estatal de Investigación (AEI) and the European Union (FEDER funds) contracts (MAT2016-77742-C2-1-P, MAT2016-77742-C2-2-P). Financial support of Network E3TECH (CTQ2017-90659-REDT) ...[+]
Type: Artículo

References

Prieto, R., Louis, E., & Molina, J. M. (2012). Fabrication of mesophase pitch-derived open-pore carbon foams by replication processing. Carbon, 50(5), 1904-1912. doi:10.1016/j.carbon.2011.12.041

Molina-Jordá, J. M. (2016). Mesophase pitch-derived graphite foams with selective distribution of TiC nanoparticles for catalytic applications. Carbon, 103, 5-8. doi:10.1016/j.carbon.2016.02.051

Lai, J., Nsabimana, A., Luque, R., & Xu, G. (2018). 3D Porous Carbonaceous Electrodes for Electrocatalytic Applications. Joule, 2(1), 76-93. doi:10.1016/j.joule.2017.10.005 [+]
Prieto, R., Louis, E., & Molina, J. M. (2012). Fabrication of mesophase pitch-derived open-pore carbon foams by replication processing. Carbon, 50(5), 1904-1912. doi:10.1016/j.carbon.2011.12.041

Molina-Jordá, J. M. (2016). Mesophase pitch-derived graphite foams with selective distribution of TiC nanoparticles for catalytic applications. Carbon, 103, 5-8. doi:10.1016/j.carbon.2016.02.051

Lai, J., Nsabimana, A., Luque, R., & Xu, G. (2018). 3D Porous Carbonaceous Electrodes for Electrocatalytic Applications. Joule, 2(1), 76-93. doi:10.1016/j.joule.2017.10.005

Morozov, S. V., Novoselov, K. S., Katsnelson, M. I., Schedin, F., Elias, D. C., Jaszczak, J. A., & Geim, A. K. (2008). Giant Intrinsic Carrier Mobilities in Graphene and Its Bilayer. Physical Review Letters, 100(1). doi:10.1103/physrevlett.100.016602

Singh, V., Joung, D., Zhai, L., Das, S., Khondaker, S. I., & Seal, S. (2011). Graphene based materials: Past, present and future. Progress in Materials Science, 56(8), 1178-1271. doi:10.1016/j.pmatsci.2011.03.003

Zhou, M., Wang, Y., Zhai, Y., Zhai, J., Ren, W., Wang, F., & Dong, S. (2009). Controlled Synthesis of Large-Area and Patterned Electrochemically Reduced Graphene Oxide Films. Chemistry - A European Journal, 15(25), 6116-6120. doi:10.1002/chem.200900596

Bonanni, A., & Pumera, M. (2012). Electroactivity of graphene oxide on different substrates. RSC Advances, 2(28), 10575. doi:10.1039/c2ra22079b

Zhong, M., Song, Y., Li, Y., Ma, C., Zhai, X., Shi, J., … Liu, L. (2012). Effect of reduced graphene oxide on the properties of an activated carbon cloth/polyaniline flexible electrode for supercapacitor application. Journal of Power Sources, 217, 6-12. doi:10.1016/j.jpowsour.2012.05.086

Yoo, E., Okata, T., Akita, T., Kohyama, M., Nakamura, J., & Honma, I. (2009). Enhanced Electrocatalytic Activity of Pt Subnanoclusters on Graphene Nanosheet Surface. Nano Letters, 9(6), 2255-2259. doi:10.1021/nl900397t

Kundu, P., Nethravathi, C., Deshpande, P. A., Rajamathi, M., Madras, G., & Ravishankar, N. (2011). Ultrafast Microwave-Assisted Route to Surfactant-Free Ultrafine Pt Nanoparticles on Graphene: Synergistic Co-reduction Mechanism and High Catalytic Activity. Chemistry of Materials, 23(11), 2772-2780. doi:10.1021/cm200329a

Xin, Y., Liu, J., Zhou, Y., Liu, W., Gao, J., Xie, Y., … Zou, Z. (2011). Preparation and characterization of Pt supported on graphene with enhanced electrocatalytic activity in fuel cell. Journal of Power Sources, 196(3), 1012-1018. doi:10.1016/j.jpowsour.2010.08.051

Zhang, Y., Liu, C., Min, Y., Qi, X., & Ben, X. (2013). The simple preparation of graphene/Pt nanoparticles composites and their electrochemical performance. Journal of Materials Science: Materials in Electronics, 24(9), 3244-3248. doi:10.1007/s10854-013-1235-x

Products: Chemically Modified Graphene Oxidehttps://www.nanoinnova.com/product/chemically-modified-go

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record