Mostrar el registro sencillo del ítem
dc.contributor.author | Bonet Solves, José Antonio | es_ES |
dc.contributor.author | Lusky, Wolfgang | es_ES |
dc.contributor.author | Taskinen, Jari | es_ES |
dc.date.accessioned | 2020-11-21T04:31:25Z | |
dc.date.available | 2020-11-21T04:31:25Z | |
dc.date.issued | 2019-04 | es_ES |
dc.identifier.issn | 1661-8254 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/155435 | |
dc.description.abstract | [EN] Let v be a radial weight function on the unit disc or on the complex plane. It is shown that for each analytic function f0 in the Banach space Hv all analytic functions f such that v|f| is bounded, the distance of f0 to the subspace Hv0 of Hv of all the functions g such that v|g| vanishes at infinity is attained at a function g0Hv0. Moreover a simple, direct proof of the formula of the distance of f to Hv0 due to Perfekt is presented. As a consequence the corresponding results for weighted Bloch spaces are obtained. | es_ES |
dc.description.sponsorship | The authors are very thankful to the referees for their careful reading of the manuscript and their suggestions. The research of Bonet was partially supported by the Projects MTM2016-76647-P and GV Prometeo 2017/102. The research of Taskinen was partially supported by the research grant from the Faculty of Science of the University of Helsinki. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Springer-Verlag | es_ES |
dc.relation.ispartof | Complex Analysis and Operator Theory | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Banach spaces of analytic functions | es_ES |
dc.subject | Weight | es_ES |
dc.subject | Distance | es_ES |
dc.subject | Bloch functions | es_ES |
dc.subject.classification | MATEMATICA APLICADA | es_ES |
dc.title | Distance formulas on weighted Banach spaces of analytic functions | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1007/s11785-018-0815-4 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//MTM2016-76647-P/ES/ANALISIS FUNCIONAL, TEORIA DE OPERADORES Y ANALISIS TIEMPO-FRECUENCIA/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//PROMETEO%2F2017%2F102/ES/ANALISIS FUNCIONAL, TEORIA DE OPERADORES Y APLICACIONES/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada | es_ES |
dc.description.bibliographicCitation | Bonet Solves, JA.; Lusky, W.; Taskinen, J. (2019). Distance formulas on weighted Banach spaces of analytic functions. Complex Analysis and Operator Theory. 13(3):893-900. https://doi.org/10.1007/s11785-018-0815-4 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1007/s11785-018-0815-4 | es_ES |
dc.description.upvformatpinicio | 893 | es_ES |
dc.description.upvformatpfin | 900 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 13 | es_ES |
dc.description.issue | 3 | es_ES |
dc.relation.pasarela | S\404729 | es_ES |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.description.references | Axler, S., Berg, I.D., Jewell, N., Shields, A.: Approximation by compact operators and the space $$H^{\infty }+C$$ H ∞ + C . Ann. Math. 109, 601–612 (1979) | es_ES |
dc.description.references | Bierstedt, K.D., Bonet, J., Galbis, A.: Weighted spaces of holomorphic functions on bounded domains. Mich. Math. J. 40, 271–297 (1993) | es_ES |
dc.description.references | Bierstedt, K.D., Bonet, J., Taskinen, J.: Associated weights and spaces of holomorphic functions. Studia Math. 127, 137–168 (1998) | es_ES |
dc.description.references | Holmes, R., Scranton, B., Ward, J.: Approximation from the space of compact operators and other M-ideals. Duke Math. J. 42, 259–269 (1975) | es_ES |
dc.description.references | Lusky, W.: On the Fourier series of unbounded harmonic functions. J. Lond. Math. Soc. 2(61), 568–580 (2000) | es_ES |
dc.description.references | Lusky, W.: On the isomorphism classes of weighted spaces of harmonic and holomorphic functions. Studia Math. 175, 19–45 (2006) | es_ES |
dc.description.references | Perfekt, K.-M.: Duality and distance formulas in spaces defined by means of oscillation. Ark. Mat. 51, 345–361 (2013) | es_ES |
dc.description.references | Perfekt, K.-M.: On M-ideals and o–O type spaces. Math. Scand. 121(1), 151–160 (2017) | es_ES |
dc.description.references | Shields, A.L., Williams, D.L.: Bounded projections, duality and multipliers in spaces of analytic functions. Trans. Am. Math. Soc. 162, 287–302 (1971) | es_ES |
dc.description.references | Tjani, M.: Distance of a Bloch function to the little Bloch space. Bull. Aust. Math. Soc. 74, 101–119 (2006) | es_ES |
dc.description.references | Yuan, C., Tong, C.: Distance from Bloch-type functions to the analytic space $$F(p,q,s)$$ F ( p , q , s ) , Abstr. Appl. Anal. 2014, article ID 610237 | es_ES |
dc.description.references | Zhu, K.: Operator Theory in Function Spaces, 2nd edn. American Mathematical Society, Providence (2007) | es_ES |