- -

Link-Level Functional Connectivity Neuroalterations in Autism Spectrum Disorder: A Developmental Resting-State fMRI Study

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Link-Level Functional Connectivity Neuroalterations in Autism Spectrum Disorder: A Developmental Resting-State fMRI Study

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Borràs-Ferrís, Lluis es_ES
dc.contributor.author Pérez-Ramírez, María Úrsula es_ES
dc.contributor.author Moratal, David es_ES
dc.date.accessioned 2020-11-25T04:31:33Z
dc.date.available 2020-11-25T04:31:33Z
dc.date.issued 2019-03-21 es_ES
dc.identifier.uri http://hdl.handle.net/10251/155701
dc.description.abstract [EN] Autism spectrum disorder (ASD) is a neurological and developmental disorder whose late diagnosis is based on subjective tests. In seeking for earlier diagnosis, we aimed to find objective biomarkers via analysis of resting-state functional MRI (rs-fMRI) images obtained from the Autism Brain Image Data Exchange (ABIDE) database. Thus, we estimated brain functional connectivity (FC) between pairs of regions as the statistical dependence between their neural-related blood-oxygen-level-dependent (BOLD) signals. We compared FC of individuals with ASD and healthy controls, matched by age and intelligence quotient (IQ), and split into three age groups (50 children, 98 adolescents, and 32 adults), from a developmental perspective. After estimating the correlation, we observed hypoconnectivities in children and adolescents with ASD between regions belonging to the default mode network (DMN). Concretely, in children, FC decreased between the left middle temporal gyrus and right frontal pole (p = 0.0080), and between the left orbitofrontal cortex and right superior frontal gyrus (p = 0.0144). In adolescents, this decrease was observed between bilateral postcentral gyri (p = 0.0012), and between the right precuneus and right middle temporal gyrus (p = 0.0236). These results help to gain a better understanding of the involved regions on autism and its connection with the affected superior cognitive brain functions. es_ES
dc.description.sponsorship This research was partially funded by the Ministerio de Economia y Competitividad (MINECO), through the project BFU2015-64380-C2-2-R. U.P.-R. is funded by the Spanish Ministerio de Educacion, Cultura y Deporte (MECD) under grant FPU13/03537. We are thankful to the initiative ABIDE to provide the huge public release and open sharing autism database what has made possible to carry out this study in better conditions and improve the results obtained significantly. es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Diagnostics es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Autism es_ES
dc.subject Brain functional connectivity es_ES
dc.subject Default mode network es_ES
dc.subject Full correlation analysis es_ES
dc.subject Partial correlation analysis es_ES
dc.subject Region of interest analysis es_ES
dc.subject Resting-state functional MRI es_ES
dc.subject.classification TECNOLOGIA ELECTRONICA es_ES
dc.title Link-Level Functional Connectivity Neuroalterations in Autism Spectrum Disorder: A Developmental Resting-State fMRI Study es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/diagnostics9010032 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MECD//FPU13%2F03537/ES/FPU13%2F03537/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//BFU2015-64380-C2-2-R/ES/ANALISIS DE TEXTURAS EN IMAGEN CEREBRAL MULTIMODAL POR RESONANCIA MAGNETICA PARA UNA DETECCION TEMPRANA DE ALTERACIONES EN LA RED Y BIOMARCADORES DE ENFERMEDAD/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica es_ES
dc.description.bibliographicCitation Borràs-Ferrís, L.; Pérez-Ramírez, MÚ.; Moratal, D. (2019). Link-Level Functional Connectivity Neuroalterations in Autism Spectrum Disorder: A Developmental Resting-State fMRI Study. Diagnostics. 9(1):1-10. https://doi.org/10.3390/diagnostics9010032 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/diagnostics9010032 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 10 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 9 es_ES
dc.description.issue 1 es_ES
dc.identifier.eissn 2075-4418 es_ES
dc.identifier.pmid 30901848 es_ES
dc.identifier.pmcid PMC6468479 es_ES
dc.relation.pasarela S\405763 es_ES
dc.contributor.funder Ministerio de Educación es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Hull, J. V., Dokovna, L. B., Jacokes, Z. J., Torgerson, C. M., Irimia, A., & Van Horn, J. D. (2017). Resting-State Functional Connectivity in Autism Spectrum Disorders: A Review. Frontiers in Psychiatry, 7. doi:10.3389/fpsyt.2016.00205 es_ES
dc.description.references Mertz, L. (2017). Sharing Data to Solve the Autism Riddle: An Interview with Adriana Di Martino and Michael Milham of ABIDE. IEEE Pulse, 8(6), 6-9. doi:10.1109/mpul.2017.2750819 es_ES
dc.description.references Cociu, B. A., Das, S., Billeci, L., Jamal, W., Maharatna, K., Calderoni, S., … Muratori, F. (2018). Multimodal Functional and Structural Brain Connectivity Analysis in Autism: A Preliminary Integrated Approach With EEG, fMRI, and DTI. IEEE Transactions on Cognitive and Developmental Systems, 10(2), 213-226. doi:10.1109/tcds.2017.2680408 es_ES
dc.description.references Dekhil, O., Hajjdiab, H., Shalaby, A., Ali, M. T., Ayinde, B., Switala, A., … El-Baz, A. (2018). Using resting state functional MRI to build a personalized autism diagnosis system. PLOS ONE, 13(10), e0206351. doi:10.1371/journal.pone.0206351 es_ES
dc.description.references Rogers, B. P., Morgan, V. L., Newton, A. T., & Gore, J. C. (2007). Assessing functional connectivity in the human brain by fMRI. Magnetic Resonance Imaging, 25(10), 1347-1357. doi:10.1016/j.mri.2007.03.007 es_ES
dc.description.references Cheng, W., Rolls, E. T., Gu, H., Zhang, J., & Feng, J. (2015). Autism: reduced connectivity between cortical areas involved in face expression, theory of mind, and the sense of self. Brain, 138(5), 1382-1393. doi:10.1093/brain/awv051 es_ES
dc.description.references Lynch, C. J., Uddin, L. Q., Supekar, K., Khouzam, A., Phillips, J., & Menon, V. (2013). Default Mode Network in Childhood Autism: Posteromedial Cortex Heterogeneity and Relationship with Social Deficits. Biological Psychiatry, 74(3), 212-219. doi:10.1016/j.biopsych.2012.12.013 es_ES
dc.description.references Uddin, L. Q., Supekar, K., Lynch, C. J., Khouzam, A., Phillips, J., Feinstein, C., … Menon, V. (2013). Salience Network–Based Classification and Prediction of Symptom Severity in Children With Autism. JAMA Psychiatry, 70(8), 869. doi:10.1001/jamapsychiatry.2013.104 es_ES
dc.description.references Di Martino, A., Kelly, C., Grzadzinski, R., Zuo, X.-N., Mennes, M., Mairena, M. A., … Milham, M. P. (2011). Aberrant Striatal Functional Connectivity in Children with Autism. Biological Psychiatry, 69(9), 847-856. doi:10.1016/j.biopsych.2010.10.029 es_ES
dc.description.references Washington, S. D., Gordon, E. M., Brar, J., Warburton, S., Sawyer, A. T., Wolfe, A., … VanMeter, J. W. (2013). Dysmaturation of the default mode network in autism. Human Brain Mapping, 35(4), 1284-1296. doi:10.1002/hbm.22252 es_ES
dc.description.references Assaf, M., Jagannathan, K., Calhoun, V. D., Miller, L., Stevens, M. C., Sahl, R., … Pearlson, G. D. (2010). Abnormal functional connectivity of default mode sub-networks in autism spectrum disorder patients. NeuroImage, 53(1), 247-256. doi:10.1016/j.neuroimage.2010.05.067 es_ES
dc.description.references Weng, S.-J., Wiggins, J. L., Peltier, S. J., Carrasco, M., Risi, S., Lord, C., & Monk, C. S. (2010). Alterations of resting state functional connectivity in the default network in adolescents with autism spectrum disorders. Brain Research, 1313, 202-214. doi:10.1016/j.brainres.2009.11.057 es_ES
dc.description.references Kennedy, D. P., & Courchesne, E. (2008). The intrinsic functional organization of the brain is altered in autism. NeuroImage, 39(4), 1877-1885. doi:10.1016/j.neuroimage.2007.10.052 es_ES
dc.description.references Mueller, S., Keeser, D., Samson, A. C., Kirsch, V., Blautzik, J., Grothe, M., … Meindl, T. (2013). Convergent Findings of Altered Functional and Structural Brain Connectivity in Individuals with High Functioning Autism: A Multimodal MRI Study. PLoS ONE, 8(6), e67329. doi:10.1371/journal.pone.0067329 es_ES
dc.description.references Von dem Hagen, E. A. H., Stoyanova, R. S., Baron-Cohen, S., & Calder, A. J. (2012). Reduced functional connectivity within and between ‘social’ resting state networks in autism spectrum conditions. Social Cognitive and Affective Neuroscience, 8(6), 694-701. doi:10.1093/scan/nss053 es_ES
dc.description.references Uddin, L. Q., Supekar, K., & Menon, V. (2013). Reconceptualizing functional brain connectivity in autism from a developmental perspective. Frontiers in Human Neuroscience, 7. doi:10.3389/fnhum.2013.00458 es_ES
dc.description.references Kana, R. K., Uddin, L. Q., Kenet, T., Chugani, D., & Müller, R.-A. (2014). Brain connectivity in autism. Frontiers in Human Neuroscience, 8. doi:10.3389/fnhum.2014.00349 es_ES
dc.description.references Beckmann, C. F., & Smith, S. M. (2004). Probabilistic Independent Component Analysis for Functional Magnetic Resonance Imaging. IEEE Transactions on Medical Imaging, 23(2), 137-152. doi:10.1109/tmi.2003.822821 es_ES
dc.description.references Cole. (2010). Advances and pitfalls in the analysis and interpretation of resting-state FMRI data. Frontiers in Systems Neuroscience. doi:10.3389/fnsys.2010.00008 es_ES
dc.description.references Etzel, J. A., Gazzola, V., & Keysers, C. (2009). An introduction to anatomical ROI-based fMRI classification analysis. Brain Research, 1282, 114-125. doi:10.1016/j.brainres.2009.05.090 es_ES
dc.description.references Di Martino, A., Yan, C.-G., Li, Q., Denio, E., Castellanos, F. X., Alaerts, K., … Milham, M. P. (2013). The autism brain imaging data exchange: towards a large-scale evaluation of the intrinsic brain architecture in autism. Molecular Psychiatry, 19(6), 659-667. doi:10.1038/mp.2013.78 es_ES
dc.description.references Cameron, C., Yassine, B., Carlton, C., Francois, C., Alan, E., András, J., … Pierre, B. (2013). The Neuro Bureau Preprocessing Initiative: open sharing of preprocessed neuroimaging data and derivatives. Frontiers in Neuroinformatics, 7. doi:10.3389/conf.fninf.2013.09.00041 es_ES
dc.description.references Xu, T., Yang, Z., Jiang, L., Xing, X.-X., & Zuo, X.-N. (2015). A Connectome Computation System for discovery science of brain. Science Bulletin, 60(1), 86-95. doi:10.1007/s11434-014-0698-3 es_ES
dc.description.references Desikan, R. S., Ségonne, F., Fischl, B., Quinn, B. T., Dickerson, B. C., Blacker, D., … Killiany, R. J. (2006). An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. NeuroImage, 31(3), 968-980. doi:10.1016/j.neuroimage.2006.01.021 es_ES
dc.description.references Cole, M. W., Yang, G. J., Murray, J. D., Repovš, G., & Anticevic, A. (2016). Functional connectivity change as shared signal dynamics. Journal of Neuroscience Methods, 259, 22-39. doi:10.1016/j.jneumeth.2015.11.011 es_ES
dc.description.references Smith, S. M., Jenkinson, M., Woolrich, M. W., Beckmann, C. F., Behrens, T. E. J., Johansen-Berg, H., … Matthews, P. M. (2004). Advances in functional and structural MR image analysis and implementation as FSL. NeuroImage, 23, S208-S219. doi:10.1016/j.neuroimage.2004.07.051 es_ES
dc.description.references Jenkinson, M., Beckmann, C. F., Behrens, T. E. J., Woolrich, M. W., & Smith, S. M. (2012). FSL. NeuroImage, 62(2), 782-790. doi:10.1016/j.neuroimage.2011.09.015 es_ES
dc.description.references Winkler, A. M., Ridgway, G. R., Webster, M. A., Smith, S. M., & Nichols, T. E. (2014). Permutation inference for the general linear model. NeuroImage, 92, 381-397. doi:10.1016/j.neuroimage.2014.01.060 es_ES
dc.description.references Bhaumik, R., Pradhan, A., Das, S., & Bhaumik, D. K. (2018). Predicting Autism Spectrum Disorder Using Domain-Adaptive Cross-Site Evaluation. Neuroinformatics, 16(2), 197-205. doi:10.1007/s12021-018-9366-0 es_ES
dc.description.references Cavanna, A. E., & Trimble, M. R. (2006). The precuneus: a review of its functional anatomy and behavioural correlates. Brain, 129(3), 564-583. doi:10.1093/brain/awl004 es_ES
dc.description.references Rolls, E. T. (2004). The functions of the orbitofrontal cortex. Brain and Cognition, 55(1), 11-29. doi:10.1016/s0278-2626(03)00277-x es_ES
dc.description.references Beer, J. S., John, O. P., Scabini, D., & Knight, R. T. (2006). Orbitofrontal Cortex and Social Behavior: Integrating Self-monitoring and Emotion-Cognition Interactions. Journal of Cognitive Neuroscience, 18(6), 871-879. doi:10.1162/jocn.2006.18.6.871 es_ES
dc.description.references Li, W., Qin, W., Liu, H., Fan, L., Wang, J., Jiang, T., & Yu, C. (2013). Subregions of the human superior frontal gyrus and their connections. NeuroImage, 78, 46-58. doi:10.1016/j.neuroimage.2013.04.011 es_ES
dc.description.references Di Martino, A., O’Connor, D., Chen, B., Alaerts, K., Anderson, J. S., Assaf, M., … Milham, M. P. (2017). Enhancing studies of the connectome in autism using the autism brain imaging data exchange II. Scientific Data, 4(1). doi:10.1038/sdata.2017.10 es_ES
dc.subject.ods 03.- Garantizar una vida saludable y promover el bienestar para todos y todas en todas las edades es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem