Mostrar el registro sencillo del ítem
dc.contributor.author | Borràs-Ferrís, Lluis | es_ES |
dc.contributor.author | Pérez-Ramírez, María Úrsula | es_ES |
dc.contributor.author | Moratal, David | es_ES |
dc.date.accessioned | 2020-11-25T04:31:33Z | |
dc.date.available | 2020-11-25T04:31:33Z | |
dc.date.issued | 2019-03-21 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/155701 | |
dc.description.abstract | [EN] Autism spectrum disorder (ASD) is a neurological and developmental disorder whose late diagnosis is based on subjective tests. In seeking for earlier diagnosis, we aimed to find objective biomarkers via analysis of resting-state functional MRI (rs-fMRI) images obtained from the Autism Brain Image Data Exchange (ABIDE) database. Thus, we estimated brain functional connectivity (FC) between pairs of regions as the statistical dependence between their neural-related blood-oxygen-level-dependent (BOLD) signals. We compared FC of individuals with ASD and healthy controls, matched by age and intelligence quotient (IQ), and split into three age groups (50 children, 98 adolescents, and 32 adults), from a developmental perspective. After estimating the correlation, we observed hypoconnectivities in children and adolescents with ASD between regions belonging to the default mode network (DMN). Concretely, in children, FC decreased between the left middle temporal gyrus and right frontal pole (p = 0.0080), and between the left orbitofrontal cortex and right superior frontal gyrus (p = 0.0144). In adolescents, this decrease was observed between bilateral postcentral gyri (p = 0.0012), and between the right precuneus and right middle temporal gyrus (p = 0.0236). These results help to gain a better understanding of the involved regions on autism and its connection with the affected superior cognitive brain functions. | es_ES |
dc.description.sponsorship | This research was partially funded by the Ministerio de Economia y Competitividad (MINECO), through the project BFU2015-64380-C2-2-R. U.P.-R. is funded by the Spanish Ministerio de Educacion, Cultura y Deporte (MECD) under grant FPU13/03537. We are thankful to the initiative ABIDE to provide the huge public release and open sharing autism database what has made possible to carry out this study in better conditions and improve the results obtained significantly. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | MDPI AG | es_ES |
dc.relation.ispartof | Diagnostics | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Autism | es_ES |
dc.subject | Brain functional connectivity | es_ES |
dc.subject | Default mode network | es_ES |
dc.subject | Full correlation analysis | es_ES |
dc.subject | Partial correlation analysis | es_ES |
dc.subject | Region of interest analysis | es_ES |
dc.subject | Resting-state functional MRI | es_ES |
dc.subject.classification | TECNOLOGIA ELECTRONICA | es_ES |
dc.title | Link-Level Functional Connectivity Neuroalterations in Autism Spectrum Disorder: A Developmental Resting-State fMRI Study | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.3390/diagnostics9010032 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MECD//FPU13%2F03537/ES/FPU13%2F03537/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//BFU2015-64380-C2-2-R/ES/ANALISIS DE TEXTURAS EN IMAGEN CEREBRAL MULTIMODAL POR RESONANCIA MAGNETICA PARA UNA DETECCION TEMPRANA DE ALTERACIONES EN LA RED Y BIOMARCADORES DE ENFERMEDAD/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica | es_ES |
dc.description.bibliographicCitation | Borràs-Ferrís, L.; Pérez-Ramírez, MÚ.; Moratal, D. (2019). Link-Level Functional Connectivity Neuroalterations in Autism Spectrum Disorder: A Developmental Resting-State fMRI Study. Diagnostics. 9(1):1-10. https://doi.org/10.3390/diagnostics9010032 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.3390/diagnostics9010032 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 10 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 9 | es_ES |
dc.description.issue | 1 | es_ES |
dc.identifier.eissn | 2075-4418 | es_ES |
dc.identifier.pmid | 30901848 | es_ES |
dc.identifier.pmcid | PMC6468479 | es_ES |
dc.relation.pasarela | S\405763 | es_ES |
dc.contributor.funder | Ministerio de Educación | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.description.references | Hull, J. V., Dokovna, L. B., Jacokes, Z. J., Torgerson, C. M., Irimia, A., & Van Horn, J. D. (2017). Resting-State Functional Connectivity in Autism Spectrum Disorders: A Review. Frontiers in Psychiatry, 7. doi:10.3389/fpsyt.2016.00205 | es_ES |
dc.description.references | Mertz, L. (2017). Sharing Data to Solve the Autism Riddle: An Interview with Adriana Di Martino and Michael Milham of ABIDE. IEEE Pulse, 8(6), 6-9. doi:10.1109/mpul.2017.2750819 | es_ES |
dc.description.references | Cociu, B. A., Das, S., Billeci, L., Jamal, W., Maharatna, K., Calderoni, S., … Muratori, F. (2018). Multimodal Functional and Structural Brain Connectivity Analysis in Autism: A Preliminary Integrated Approach With EEG, fMRI, and DTI. IEEE Transactions on Cognitive and Developmental Systems, 10(2), 213-226. doi:10.1109/tcds.2017.2680408 | es_ES |
dc.description.references | Dekhil, O., Hajjdiab, H., Shalaby, A., Ali, M. T., Ayinde, B., Switala, A., … El-Baz, A. (2018). Using resting state functional MRI to build a personalized autism diagnosis system. PLOS ONE, 13(10), e0206351. doi:10.1371/journal.pone.0206351 | es_ES |
dc.description.references | Rogers, B. P., Morgan, V. L., Newton, A. T., & Gore, J. C. (2007). Assessing functional connectivity in the human brain by fMRI. Magnetic Resonance Imaging, 25(10), 1347-1357. doi:10.1016/j.mri.2007.03.007 | es_ES |
dc.description.references | Cheng, W., Rolls, E. T., Gu, H., Zhang, J., & Feng, J. (2015). Autism: reduced connectivity between cortical areas involved in face expression, theory of mind, and the sense of self. Brain, 138(5), 1382-1393. doi:10.1093/brain/awv051 | es_ES |
dc.description.references | Lynch, C. J., Uddin, L. Q., Supekar, K., Khouzam, A., Phillips, J., & Menon, V. (2013). Default Mode Network in Childhood Autism: Posteromedial Cortex Heterogeneity and Relationship with Social Deficits. Biological Psychiatry, 74(3), 212-219. doi:10.1016/j.biopsych.2012.12.013 | es_ES |
dc.description.references | Uddin, L. Q., Supekar, K., Lynch, C. J., Khouzam, A., Phillips, J., Feinstein, C., … Menon, V. (2013). Salience Network–Based Classification and Prediction of Symptom Severity in Children With Autism. JAMA Psychiatry, 70(8), 869. doi:10.1001/jamapsychiatry.2013.104 | es_ES |
dc.description.references | Di Martino, A., Kelly, C., Grzadzinski, R., Zuo, X.-N., Mennes, M., Mairena, M. A., … Milham, M. P. (2011). Aberrant Striatal Functional Connectivity in Children with Autism. Biological Psychiatry, 69(9), 847-856. doi:10.1016/j.biopsych.2010.10.029 | es_ES |
dc.description.references | Washington, S. D., Gordon, E. M., Brar, J., Warburton, S., Sawyer, A. T., Wolfe, A., … VanMeter, J. W. (2013). Dysmaturation of the default mode network in autism. Human Brain Mapping, 35(4), 1284-1296. doi:10.1002/hbm.22252 | es_ES |
dc.description.references | Assaf, M., Jagannathan, K., Calhoun, V. D., Miller, L., Stevens, M. C., Sahl, R., … Pearlson, G. D. (2010). Abnormal functional connectivity of default mode sub-networks in autism spectrum disorder patients. NeuroImage, 53(1), 247-256. doi:10.1016/j.neuroimage.2010.05.067 | es_ES |
dc.description.references | Weng, S.-J., Wiggins, J. L., Peltier, S. J., Carrasco, M., Risi, S., Lord, C., & Monk, C. S. (2010). Alterations of resting state functional connectivity in the default network in adolescents with autism spectrum disorders. Brain Research, 1313, 202-214. doi:10.1016/j.brainres.2009.11.057 | es_ES |
dc.description.references | Kennedy, D. P., & Courchesne, E. (2008). The intrinsic functional organization of the brain is altered in autism. NeuroImage, 39(4), 1877-1885. doi:10.1016/j.neuroimage.2007.10.052 | es_ES |
dc.description.references | Mueller, S., Keeser, D., Samson, A. C., Kirsch, V., Blautzik, J., Grothe, M., … Meindl, T. (2013). Convergent Findings of Altered Functional and Structural Brain Connectivity in Individuals with High Functioning Autism: A Multimodal MRI Study. PLoS ONE, 8(6), e67329. doi:10.1371/journal.pone.0067329 | es_ES |
dc.description.references | Von dem Hagen, E. A. H., Stoyanova, R. S., Baron-Cohen, S., & Calder, A. J. (2012). Reduced functional connectivity within and between ‘social’ resting state networks in autism spectrum conditions. Social Cognitive and Affective Neuroscience, 8(6), 694-701. doi:10.1093/scan/nss053 | es_ES |
dc.description.references | Uddin, L. Q., Supekar, K., & Menon, V. (2013). Reconceptualizing functional brain connectivity in autism from a developmental perspective. Frontiers in Human Neuroscience, 7. doi:10.3389/fnhum.2013.00458 | es_ES |
dc.description.references | Kana, R. K., Uddin, L. Q., Kenet, T., Chugani, D., & Müller, R.-A. (2014). Brain connectivity in autism. Frontiers in Human Neuroscience, 8. doi:10.3389/fnhum.2014.00349 | es_ES |
dc.description.references | Beckmann, C. F., & Smith, S. M. (2004). Probabilistic Independent Component Analysis for Functional Magnetic Resonance Imaging. IEEE Transactions on Medical Imaging, 23(2), 137-152. doi:10.1109/tmi.2003.822821 | es_ES |
dc.description.references | Cole. (2010). Advances and pitfalls in the analysis and interpretation of resting-state FMRI data. Frontiers in Systems Neuroscience. doi:10.3389/fnsys.2010.00008 | es_ES |
dc.description.references | Etzel, J. A., Gazzola, V., & Keysers, C. (2009). An introduction to anatomical ROI-based fMRI classification analysis. Brain Research, 1282, 114-125. doi:10.1016/j.brainres.2009.05.090 | es_ES |
dc.description.references | Di Martino, A., Yan, C.-G., Li, Q., Denio, E., Castellanos, F. X., Alaerts, K., … Milham, M. P. (2013). The autism brain imaging data exchange: towards a large-scale evaluation of the intrinsic brain architecture in autism. Molecular Psychiatry, 19(6), 659-667. doi:10.1038/mp.2013.78 | es_ES |
dc.description.references | Cameron, C., Yassine, B., Carlton, C., Francois, C., Alan, E., András, J., … Pierre, B. (2013). The Neuro Bureau Preprocessing Initiative: open sharing of preprocessed neuroimaging data and derivatives. Frontiers in Neuroinformatics, 7. doi:10.3389/conf.fninf.2013.09.00041 | es_ES |
dc.description.references | Xu, T., Yang, Z., Jiang, L., Xing, X.-X., & Zuo, X.-N. (2015). A Connectome Computation System for discovery science of brain. Science Bulletin, 60(1), 86-95. doi:10.1007/s11434-014-0698-3 | es_ES |
dc.description.references | Desikan, R. S., Ségonne, F., Fischl, B., Quinn, B. T., Dickerson, B. C., Blacker, D., … Killiany, R. J. (2006). An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. NeuroImage, 31(3), 968-980. doi:10.1016/j.neuroimage.2006.01.021 | es_ES |
dc.description.references | Cole, M. W., Yang, G. J., Murray, J. D., Repovš, G., & Anticevic, A. (2016). Functional connectivity change as shared signal dynamics. Journal of Neuroscience Methods, 259, 22-39. doi:10.1016/j.jneumeth.2015.11.011 | es_ES |
dc.description.references | Smith, S. M., Jenkinson, M., Woolrich, M. W., Beckmann, C. F., Behrens, T. E. J., Johansen-Berg, H., … Matthews, P. M. (2004). Advances in functional and structural MR image analysis and implementation as FSL. NeuroImage, 23, S208-S219. doi:10.1016/j.neuroimage.2004.07.051 | es_ES |
dc.description.references | Jenkinson, M., Beckmann, C. F., Behrens, T. E. J., Woolrich, M. W., & Smith, S. M. (2012). FSL. NeuroImage, 62(2), 782-790. doi:10.1016/j.neuroimage.2011.09.015 | es_ES |
dc.description.references | Winkler, A. M., Ridgway, G. R., Webster, M. A., Smith, S. M., & Nichols, T. E. (2014). Permutation inference for the general linear model. NeuroImage, 92, 381-397. doi:10.1016/j.neuroimage.2014.01.060 | es_ES |
dc.description.references | Bhaumik, R., Pradhan, A., Das, S., & Bhaumik, D. K. (2018). Predicting Autism Spectrum Disorder Using Domain-Adaptive Cross-Site Evaluation. Neuroinformatics, 16(2), 197-205. doi:10.1007/s12021-018-9366-0 | es_ES |
dc.description.references | Cavanna, A. E., & Trimble, M. R. (2006). The precuneus: a review of its functional anatomy and behavioural correlates. Brain, 129(3), 564-583. doi:10.1093/brain/awl004 | es_ES |
dc.description.references | Rolls, E. T. (2004). The functions of the orbitofrontal cortex. Brain and Cognition, 55(1), 11-29. doi:10.1016/s0278-2626(03)00277-x | es_ES |
dc.description.references | Beer, J. S., John, O. P., Scabini, D., & Knight, R. T. (2006). Orbitofrontal Cortex and Social Behavior: Integrating Self-monitoring and Emotion-Cognition Interactions. Journal of Cognitive Neuroscience, 18(6), 871-879. doi:10.1162/jocn.2006.18.6.871 | es_ES |
dc.description.references | Li, W., Qin, W., Liu, H., Fan, L., Wang, J., Jiang, T., & Yu, C. (2013). Subregions of the human superior frontal gyrus and their connections. NeuroImage, 78, 46-58. doi:10.1016/j.neuroimage.2013.04.011 | es_ES |
dc.description.references | Di Martino, A., O’Connor, D., Chen, B., Alaerts, K., Anderson, J. S., Assaf, M., … Milham, M. P. (2017). Enhancing studies of the connectome in autism using the autism brain imaging data exchange II. Scientific Data, 4(1). doi:10.1038/sdata.2017.10 | es_ES |
dc.subject.ods | 03.- Garantizar una vida saludable y promover el bienestar para todos y todas en todas las edades | es_ES |