P. P. Ripollès V. Heuchert A. Burnett Coinage and identity in the Roman provinces Oxford University Press London 79 93
M. Gozalbes Circulación y uso de los denarios ibéricos in M. Campo Ús i circulació de la moneda a la Hispania Citerior XIII Curs d'història monetària d'Hispania Museu de Prehistòria de València València 83 103
Constantinides, I., Gritsch, M., Adriaens, A., Hutter, H., & Adams, F. (2001). Microstructural characterisation of five simulated archaeological copper alloys using light microscopy, scanning electron microscopy, energy dispersive X-ray microanalysis and secondary ion mass spectrometry. Analytica Chimica Acta, 440(2), 189-198. doi:10.1016/s0003-2670(01)01061-3
[+]
P. P. Ripollès V. Heuchert A. Burnett Coinage and identity in the Roman provinces Oxford University Press London 79 93
M. Gozalbes Circulación y uso de los denarios ibéricos in M. Campo Ús i circulació de la moneda a la Hispania Citerior XIII Curs d'història monetària d'Hispania Museu de Prehistòria de València València 83 103
Constantinides, I., Gritsch, M., Adriaens, A., Hutter, H., & Adams, F. (2001). Microstructural characterisation of five simulated archaeological copper alloys using light microscopy, scanning electron microscopy, energy dispersive X-ray microanalysis and secondary ion mass spectrometry. Analytica Chimica Acta, 440(2), 189-198. doi:10.1016/s0003-2670(01)01061-3
Linke, R., & Schreiner, M. (2000). Energy Dispersive X-Ray Fluorescence Analysis and X-Ray Microanalysis of Medieval Silver Coins. Microchimica Acta, 133(1-4), 165-170. doi:10.1007/s006040070087
Dowsett, M., & Adriaens, A. (2004). The role of SIMS in cultural heritage studies. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 226(1-2), 38-52. doi:10.1016/j.nimb.2003.12.086
Shalev, S., Shilstein, S. S., & Yekutieli, Y. (2006). XRF study of archaeological and metallurgical material from an ancient copper-smelting site near Ein-Yahav, Israel☆. Talanta, 70(5), 909-913. doi:10.1016/j.talanta.2006.05.052
Gaudiuso, R., Dell’Aglio, M., De Pascale, O., Loperfido, S., Mangone, A., & De Giacomo, A. (2014). Laser-induced breakdown spectroscopy of archaeological findings with calibration-free inverse method: Comparison with classical laser-induced breakdown spectroscopy and conventional techniques. Analytica Chimica Acta, 813, 15-24. doi:10.1016/j.aca.2014.01.020
Del Hoyo-Meléndez, J. M., Świt, P., Matosz, M., Woźniak, M., Klisińska-Kopacz, A., & Bratasz, Ł. (2015). Micro-XRF analysis of silver coins from medieval Poland. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 349, 6-16. doi:10.1016/j.nimb.2015.02.018
Tomassetti, M., Marini, F., Bucci, R., & Campanella, L. (2016). A survey on innovative dating methods in archaeometry with focus on fossil bones. TrAC Trends in Analytical Chemistry, 79, 371-379. doi:10.1016/j.trac.2015.11.017
BUDD, P., GALE, D., POLLARD, A. M., THOMAS, R. G., & WILLIAMS, P. A. (1993). EVALUATING LEAD ISOTOPE DATA: FURTHER OBSERVATIONS. Archaeometry, 35(2), 241-247. doi:10.1111/j.1475-4754.1993.tb01038.x
Attanasio, D., Bultrini, G., & Ingo, G. M. (2001). The Possibility of Provenancing A Series of Bronze Punic Coins Found At Tharros (Western Sardinia) Using the Literature Lead Isotope Database. Archaeometry, 43(4), 529-547. doi:10.1111/1475-4754.00035
Scott, D. A. (1994). An Examination of the Patina and Corrosion Morphology of Some Roman Bronzes. Journal of the American Institute for Conservation, 33(1), 1. doi:10.2307/3179666
Constantinides, I., Adriaens, A., & Adams, F. (2002). Surface characterization of artificial corrosion layers on copper alloy reference materials. Applied Surface Science, 189(1-2), 90-101. doi:10.1016/s0169-4332(02)00005-3
Robbiola, L., & Portier, R. (2006). A global approach to the authentication of ancient bronzes based on the characterization of the alloy–patina–environment system. Journal of Cultural Heritage, 7(1), 1-12. doi:10.1016/j.culher.2005.11.001
Robbiola, L., Blengino, J.-M., & Fiaud, C. (1998). Morphology and mechanisms of formation of natural patinas on archaeological Cu–Sn alloys. Corrosion Science, 40(12), 2083-2111. doi:10.1016/s0010-938x(98)00096-1
L. Robbiola L.-P. Hurtel Standard nature of the passive layers of buried archaeological bronze – The example of two Roman half-length portraits in I. MacLeod S. Pennec L. Robbiola 1997 109 117
F. Scholz B. Meyer 1998 1 86
Doménech-Carbó, A., Labuda, J., & Scholz, F. (2012). Electroanalytical chemistry for the analysis of solids: Characterization and classification (IUPAC Technical Report). Pure and Applied Chemistry, 85(3), 609-631. doi:10.1351/pac-rep-11-11-13
Doménech-Carbó, A., Doménech-Carbó, M. T., & Costa, V. (Eds.). (2009). Electrochemical Methods in Archaeometry, Conservation and Restoration. Monographs in Electrochemistry. doi:10.1007/978-3-540-92868-3
Doménech, A. (2011). Tracing, authenticating and dating archaeological metal using the voltammetry of microparticles. Analytical Methods, 3(10), 2181. doi:10.1039/c1ay05416c
Doménech-Carbó, A., & Doménech-Carbó, M. T. (2018). Electroanalytical techniques in archaeological and art conservation. Pure and Applied Chemistry, 90(3), 447-461. doi:10.1515/pac-2017-0508
Costa, V., Leyssens, K., Adriaens, A., Richard, N., & Scholz, F. (2009). Electrochemistry reveals archaeological materials. Journal of Solid State Electrochemistry, 14(3), 449-451. doi:10.1007/s10008-009-0864-8
Arjmand, F., & Adriaens, A. (2011). Electrochemical quantification of copper-based alloys using voltammetry of microparticles: optimization of the experimental conditions. Journal of Solid State Electrochemistry, 16(2), 535-543. doi:10.1007/s10008-011-1365-0
Souissi, N., Bousselmi, L., Khosrof, S., & Triki, E. (2004). Voltammetric behaviour of an archeaological bronze alloy in aqueous chloride media. Materials and Corrosion, 55(4), 284-292. doi:10.1002/maco.200303719
Ottenwelter, E., & Costa, V. (2014). Evidence of Metallic Plating on Archaeological Artefacts by Voltammetry of Microparticles. Archaeometry, 57(3), 497-504. doi:10.1111/arcm.12091
Doménech-Carbó, A., Doménech-Carbó, M., & Martínez-Lázaro, I. (2007). Electrochemical identification of bronze corrosion products in archaeological artefacts. A case study. Microchimica Acta, 162(3-4), 351-359. doi:10.1007/s00604-007-0839-3
Šatović, D., Martinez, S., & Bobrowski, A. (2010). Electrochemical identification of corrosion products on historical and archaeological bronzes using the voltammetry of micro-particles attached to a carbon paste electrode. Talanta, 81(4-5), 1760-1765. doi:10.1016/j.talanta.2010.03.037
Doménech-Carbó, A., Doménech-Carbó, M. T., Redondo-Marugán, J., Osete-Cortina, L., & Vivancos-Ramón, M. V. (2015). Electrochemical Characterization of Corrosion Products in Leaded Bronze Sculptures Considering Ohmic Drop Effects on Tafel Analysis. Electroanalysis, 28(4), 833-845. doi:10.1002/elan.201500613
Blum, D., Leyffer, W., & Holze, R. (1996). Pencil-Leads as new electrodes for abrasive stripping voltammetry. Electroanalysis, 8(3), 296-297. doi:10.1002/elan.1140080317
Doménech-Carbó, A., Doménech-Carbó, M. T., & Peiró-Ronda, Mªa. (2011). ‘One-Touch’ Voltammetry of Microparticles for the Identification of Corrosion Products in Archaeological Lead. Electroanalysis, 23(6), 1391-1400. doi:10.1002/elan.201000739
Doménech, A., Lastras, M., Rodríguez, F., & Osete, L. (2013). Mapping of corrosion products of highly altered archeological iron using voltammetry of microparticles. Microchemical Journal, 106, 41-50. doi:10.1016/j.microc.2012.05.002
Doménech, A., Doménech-Carbó, M. T., & Martínez-Lázaro, I. (2010). Layer-by-layer identification of copper alteration products in metallic works of art using the voltammetry of microparticles. Analytica Chimica Acta, 680(1-2), 1-9. doi:10.1016/j.aca.2010.09.002
DOMÉNECH-CARBÓ, A., DOMÉNECH-CARBÓ, M. T., PEIRÓ-RONDA, M. A., & OSETE-CORTINA, L. (2011). ELECTROCHEMISTRY AND AUTHENTICATION OF ARCHAEOLOGICAL LEAD USING VOLTAMMETRY OF MICROPARTICLES: APPLICATION TO THE TOSSAL DE SANT MIQUEL IBERIAN PLATE. Archaeometry, 53(6), 1193-1211. doi:10.1111/j.1475-4754.2011.00608.x
Doménech-Carbó, A., Doménech-Carbó, M. T., Pérez, M. L., & Herrero-Cortell, M. (2015). Detection of archaeological forgeries of Iberian lead plates using nanoelectrochemical techniques. The lot of fake plates from Bugarra (Spain). Forensic Science International, 247, 79-88. doi:10.1016/j.forsciint.2014.12.001
Doménech-Carbó, A., Doménech-Carbó, M. T., & Peiró-Ronda, M. A. (2011). Dating Archeological Lead Artifacts from Measurement of the Corrosion Content Using the Voltammetry of Microparticles. Analytical Chemistry, 83(14), 5639-5644. doi:10.1021/ac200731q
Doménech-Carbó, A., Doménech-Carbó, M. T., Capelo, S., Pasíes, T., & Martínez-Lázaro, I. (2014). Dating Archaeological Copper/Bronze Artifacts by Using the Voltammetry of Microparticles. Angewandte Chemie International Edition, 53(35), 9262-9266. doi:10.1002/anie.201404522
Doménech-Carbó, A., Scholz, F., Doménech-Carbó, M. T., Piquero-Cilla, J., Montoya, N., Pasíes-Oviedo, T., … Oliver, A. (2018). Dating of Archaeological Gold by Means of Solid State Electrochemistry. ChemElectroChem, 5(15), 2113-2117. doi:10.1002/celc.201800435
Doménech-Carbó, A., Doménech-Carbó, M. T., Redondo-Marugán, J., Osete-Cortina, L., Barrio, J., Fuentes, A., … Pasíes, T. (2017). Electrochemical Characterization and Dating of Archaeological Leaded Bronze Objects Using the Voltammetry of Immobilized Particles. Archaeometry, 60(2), 308-324. doi:10.1111/arcm.12308
Di Turo, F., Montoya, N., Piquero-Cilla, J., De Vito, C., Coletti, F., Favero, G., … Doménech-Carbó, A. (2017). Dating Archaeological Strata in theMagna MaterTemple Using Solid-state Voltammetric Analysis of Leaded Bronze Coins. Electroanalysis, 30(2), 361-370. doi:10.1002/elan.201700724
Doménech-Carbó, A., Doménech-Carbó, M. T., Álvarez-Romero, C., Montoya, N., Pasíes-Oviedo, T., & Buendía, M. (2017). Electrochemical Characterization of Coinage Techniques the 17thCentury: ThemaravedísCase. Electroanalysis, 29(9), 2008-2018. doi:10.1002/elan.201700326
Pavlov, D., Monakhov, B., Maja, M., & Penazzi, N. (1989). Mechanism of Action of Sn on the Passivation Phenomena in the Lead‐Acid Battery Positive Plate (Sn‐Free Effect). Journal of The Electrochemical Society, 136(1), 27-33. doi:10.1149/1.2096603
Cai, W.-B., Wan, Y.-Q., Liu, H.-T., & Zhou, W.-F. (1995). A study of the reduction process of anodic PbO2 film on Pb in sulfuric acid solution. Journal of Electroanalytical Chemistry, 387(1-2), 95-100. doi:10.1016/0022-0728(94)03866-2
MEEKS, N. D. (1986). TIN-RICH SURFACES ON BRONZE?SOME EXPERIMENTAL AND ARCHAEOLOGICAL CONSIDERATIONS. Archaeometry, 28(2), 133-162. doi:10.1111/j.1475-4754.1986.tb00383.x
Serghini-Idrissi, M., Bernard, M. C., Harrif, F. Z., Joiret, S., Rahmouni, K., Srhiri, A., … Ziani, M. (2005). Electrochemical and spectroscopic characterizations of patinas formed on an archaeological bronze coin. Electrochimica Acta, 50(24), 4699-4709. doi:10.1016/j.electacta.2005.01.050
Bongiorno, V., Campodonico, S., Caffara, R., Piccardo, P., & Carnasciali, M. M. (2012). Micro‐Raman spectroscopy for the characterization of artistic patinas produced on copper‐based alloys. Journal of Raman Spectroscopy, 43(11), 1617-1622. doi:10.1002/jrs.4167
Basso, E., Invernizzi, C., Malagodi, M., La Russa, M. F., Bersani, D., & Lottici, P. P. (2014). Characterization of colorants and opacifiers in roman glass mosaictesseraethrough spectroscopic and spectrometric techniques. Journal of Raman Spectroscopy, 45(3), 238-245. doi:10.1002/jrs.4449
Ingo, G. M., Plescia, P., Angelini, E., Riccucci, C., & de Caro, T. (2006). Bronze roman mirrors: the secret of brightness. Applied Physics A, 83(4), 611-615. doi:10.1007/s00339-006-3535-y
[-]