Resumen:
|
[EN] We study the class of Banach spaces X such that the locally convex space (X, mu(X,Y)) is complete for every norming and norm-closed subspace Y subset of X*, where mu(X, Y) denotes the Mackey topology on X associated ...[+]
[EN] We study the class of Banach spaces X such that the locally convex space (X, mu(X,Y)) is complete for every norming and norm-closed subspace Y subset of X*, where mu(X, Y) denotes the Mackey topology on X associated to the dual pair < X, Y >. Such Banach spaces are called fully Mackey complete. We show that fully Mackey completeness is implied by Efremov's property (epsilon) and, on the other hand, it prevents the existence of subspaces isomorphic to l(1)(omega(1)). This extends previous results by Guirao et al. (2017) [9] and Bonet and Cascales (2010) [3]. Further examples of Banach spaces which are not fully Mackey complete are exhibited, like C[0, omega(1)] and the long James space J(omega(1)). Finally, by assuming the Continuum Hypothesis, we construct a Banach space with w*-sequential dual unit ball which is not fully Mackey complete. A key role in our discussion is played by the (at least formally) smaller class of Banach spaces X such that (Y, w*) has the Mazur property for every norming and norm-closed subspace Y subset of X*. (C) 2019 Elsevier Inc. All rights reserved.
[-]
|
Código del Proyecto:
|
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/MTM2017-83262-C2-1-P/ES/ANALISIS COMPLEJO Y GEOMETRIA EN ESPACIOS DE BANACH/
...[+]
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/MTM2017-83262-C2-1-P/ES/ANALISIS COMPLEJO Y GEOMETRIA EN ESPACIOS DE BANACH/
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/MTM2017-83262-C2-2-P/ES/LA INTERACCION ENTRE GEOMETRIA Y TOPOLOGIA EN ESPACIOS DE BANACH. APLICACIONES./
info:eu-repo/grantAgreement/f SéNeCa//19368%2FPI%2F14/
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/MTM2017-86182-P/ES/TEORIA DE CONJUNTOS Y ESPACIOS DE BANACH/
info:eu-repo/grantAgreement/MINECO//MTM2014-54182-P/ES/TOPOLOGIA, ANALISIS Y CONJUNTOS/
info:eu-repo/grantAgreement/f SéNeCa//19275%2FPI%2F14/
[-]
|
Agradecimientos:
|
The authors wish to thank A. Aviles for valuable discussions on the topic of this paper. They are also grateful to the referee for his/her comments and suggestions. A.J. Guirao was supported by projects MTM2017-83262-C2-1-P ...[+]
The authors wish to thank A. Aviles for valuable discussions on the topic of this paper. They are also grateful to the referee for his/her comments and suggestions. A.J. Guirao was supported by projects MTM2017-83262-C2-1-P (AEI/FEDER, UE) and 19368/PI/14 (Fundacion Seneca). G. Martinez-Cervantes and J. Rodriguez were supported by projects MTM2014-54182-P and MTM2017-86182-P (AEI/FEDER, UE) and 19275/PI/14 (Fundacion Seneca).
[-]
|