- -

Heat stress risk in European dairy cattle husbandry under different climate change scenarios - uncertainties and potential impacts

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Heat stress risk in European dairy cattle husbandry under different climate change scenarios - uncertainties and potential impacts

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Hempel, Sabrina es_ES
dc.contributor.author Menz, Christoph es_ES
dc.contributor.author Pinto, Severino es_ES
dc.contributor.author Galán, Elena es_ES
dc.contributor.author Janke, David es_ES
dc.contributor.author Estellés, F. es_ES
dc.contributor.author Müschner-Siemens, Theresa es_ES
dc.contributor.author Wang, Xiaoshuai es_ES
dc.contributor.author Heinicke, Julia es_ES
dc.contributor.author Zhang, Guoqiang es_ES
dc.contributor.author Amon, Barbara es_ES
dc.contributor.author Del Prado, Agustín es_ES
dc.contributor.author Amon, Thomas es_ES
dc.date.accessioned 2020-11-27T04:31:04Z
dc.date.available 2020-11-27T04:31:04Z
dc.date.issued 2019-12-05 es_ES
dc.identifier.issn 2190-4979 es_ES
dc.identifier.uri http://hdl.handle.net/10251/155956
dc.description.abstract [EN] In the last decades, a global warming trend was observed. Along with the temperature increase, modifications in the humidity and wind regime amplify the regional and local impacts on livestock husbandry. Direct impacts include the occurrence of climatic stress conditions. In Europe, cows are economically highly relevant and are mainly kept in naturally ventilated buildings that are most susceptible to climate change. The high-yielding cows are particularly vulnerable to heat stress. Modifications in housing management are the main measures taken to improve the ability of livestock to cope with these conditions. Measures are typically taken in direct reaction to uncomfortable conditions instead of in anticipation of a long-term risk for climatic stress. Measures that balance welfare, environmental and economic issues are barely investigated in the context of climate change and are thus almost not available for commercial farms. Quantitative analysis of the climate change impacts on animal welfare and linked economic and environmental factors is rare. Therefore, we used a numerical modeling approach to estimate the future heat stress risk in such dairy cattle husbandry systems. The indoor climate was monitored inside three reference barns in central Europe and the Mediterranean regions. An artificial neuronal network (ANN) was trained to relate the outdoor weather conditions provided by official meteorological weather stations to the measured indoor microclimate. Subsequently, this ANN model was driven by an ensemble of regional climate model projections with three different greenhouse gas concentration scenarios. For the evaluation of the heat stress risk, we considered the number and duration of heat stress events. Based on the changes in the heat stress events, various economic and environmental impacts were estimated. The impacts of the projected increase in heat stress risk varied among the barns due to different locations and designs as well as the anticipated climate change (considering different climate models and future greenhouse gas concentrations). There was an overall increasing trend in number and duration of heat stress events. At the end of the century, the number of annual stress events can be expected to increase by up to 2000, while the average duration of the events increases by up to 22 h compared to the end of the last century. This implies strong impacts on economics, environment and animal welfare and an urgent need for mid-term adaptation strategies. We anticipated that up to one-tenth of all hours of a year, correspondingly one-third of all days, will be classified as critical heat stress conditions. Due to heat stress, milk yield may decrease by about 2.8 % relative to the present European milk yield, and farmers may expect financial losses in the summer season of about 5.4 % of their monthly income. In addition, an increasing demand for emission reduction measures must be expected, as an emission increase of about 16 Gg of ammonia and 0.1 Gg of methane per year can be expected under the anticipated heat stress conditions. The cattle respiration rate increases by up to 60 %, and the standing time may be prolonged by 1 h. This causes health issues and increases the probability of medical treatments. The various impacts imply feedback loops in the climate system which are presently underexplored. Hence, future in-depth studies on the different impacts and adaptation options at different stress levels are highly recommended. es_ES
dc.description.sponsorship This research has been supported by the German Federal Ministry of Food and Agriculture (BMEL) through the Federal Office for Agriculture and Food (BLE) (grant nos. 2814ERA02C and 2814ERA03C), the Instituto Nacional de Investigacion Tecnologia Agraria y Alimentaria (INIA) (grant no. 618105), the Basque Government (grant no. BERC 2018-2021), the Spanish Ministry of Economy, Industry and Competitiveness MINECO (grant nos. MDM-2017-0714, FJCI-2016-30263, and RYC-2017-22143), and the Innovation Foundation Denmark (grant no. 4215-00004B). es_ES
dc.language Inglés es_ES
dc.publisher Copernicus Publications es_ES
dc.relation.ispartof Earth System Dynamics es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject.classification PRODUCCION ANIMAL es_ES
dc.title Heat stress risk in European dairy cattle husbandry under different climate change scenarios - uncertainties and potential impacts es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.5194/esd-10-859-2019 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/FP7/618105/EU/Food security, Agriculture, Climate Change ERA-NET plus/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/BMEL//2814ERA02C/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI//MDM-2017-0714/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/BMEL//2814ERA03C/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//FJCI-2016-30263/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI//RYC-2017-22143/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/IFD//4215-00004B/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ciencia Animal - Departament de Ciència Animal es_ES
dc.description.bibliographicCitation Hempel, S.; Menz, C.; Pinto, S.; Galán, E.; Janke, D.; Estellés, F.; Müschner-Siemens, T.... (2019). Heat stress risk in European dairy cattle husbandry under different climate change scenarios - uncertainties and potential impacts. Earth System Dynamics. 10(4):859-884. https://doi.org/10.5194/esd-10-859-2019 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.5194/esd-10-859-2019 es_ES
dc.description.upvformatpinicio 859 es_ES
dc.description.upvformatpfin 884 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 10 es_ES
dc.description.issue 4 es_ES
dc.relation.pasarela S\408809 es_ES
dc.contributor.funder Innovation Fund Denmark es_ES
dc.contributor.funder Gobierno Vasco/Eusko Jaurlaritza es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.contributor.funder Bundesministerium für Ernährung und Landwirtschaft, Alemania es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.description.references Acatincăi, S., Gavojdian, D., Stanciu, G., Cziszter, L. T., Tripon, I., and Baul, S.: Study Regarding Rumination Behavior in Cattle–Position Adopted by Cows During Rumination Process, Scientific Papers Animal Science and Biotechnologies, 43, 199–202, 2010. a es_ES
dc.description.references Allen, J., Anderson, S., Collier, R., and Smith, J.: Managing heat stress and its impact on cow behavior, in: 28th Annual Southwest Nutrition and Management Conference, 6–8 March 2013, Reno, Nevada, USA, 2013. a es_ES
dc.description.references Allen, J., Hall, L., Collier, R., and Smith, J.: Effect of core body temperature, time of day, and climate conditions on behavioral patterns of lactating dairy cows experiencing mild to moderate heat stress, J. Dairy Sci., 98, 118–127, 2015. a, b es_ES
dc.description.references Amon, B., Kryvoruchko, V., Fröhlich, M., Amon, T., Pöllinger, A., Mösenbacher, I., and Hausleitner, A.: Ammonia and greenhouse gas emissions from a straw flow system for fattening pigs: Housing and manure storage, Livest. Sci., 112, 199–207, 2007. a es_ES
dc.description.references Anderson, S., Bradford, B., Harner, J., Tucker, C., Choi, C., Allen, J., Hall, L., Rungruang, S., Collier, R., and Smith, J.: Effects of adjustable and stationary fans with misters on core body temperature and lying behavior of lactating dairy cows in a semiarid climate, J. Dairy Sci., 96, 4738–4750, 2013. a, b es_ES
dc.description.references Angrecka, S. and Herbut, P.: Conditions for cold stress development in dairy cattle kept in free stall barn during severe frosts, Czech J. Anim. Sci., 60, 81–87, https://doi.org/10.17221/7978-CJAS, 2015. a es_ES
dc.description.references Bailey, K., Jones, C., and Heinrichs, A.: Economic returns to Holstein and Jersey herds under multiple component pricing, J. Dairy Sci., 88, 2269–2280, 2005. a es_ES
dc.description.references Berman, A.: Estimates of heat stress relief needs for Holstein dairy cows 1, J. Anim. Sci., 83, 1377–1384, 2005. a es_ES
dc.description.references Berman, A., Folman, Y., Kaim, M., Mamen, M., Herz, Z., Wolfenson, D., Arieli, A., and Graber, Y.: Upper critical temperatures and forced ventilation effects for high-yielding dairy cows in a subtropical climate, J. Dairy Sci., 68, 1488–1495, 1985. a es_ES
dc.description.references Bernabucci, U., Biffani, S., Buggiotti, L., Vitali, A., Lacetera, N., and Nardone, A.: The effects of heat stress in Italian Holstein dairy cattle, J. Dairy Sci., 97, 471–486, 2014. a, b es_ES
dc.description.references Bianca, W.: Relative importance of dry- and wet-bulb temperatures in causing heat stress in cattle, Nature, 195, 251–252, 1962. a es_ES
dc.description.references Bohmanova, J., Misztal, I., and Cole, J.: Temperature-humidity indices as indicators of milk production losses due to heat stress, J. Dairy Sci., 90, 1947–1956, 2007. a, b, c, d es_ES
dc.description.references Bouraoui, R., Lahmar, M., Majdoub, A., Djemali, M., and Belyea, R.: The relationship of temperature-humidity index with milk production of dairy cows in a Mediterranean climate, Anim. Res., 51, 479–491, 2002. a, b es_ES
dc.description.references Broucek, J.: Production of methane emissions from ruminant husbandry: a review, J. Environ. Prot., 5, 1482–1493, https://doi.org/10.4236/jep.2014.515141, 2014. a es_ES
dc.description.references Brouček, J., Letkovičová, M., and Kovalčuj, K.: Estimation of cold stress effect on dairy cows, Int. J. Biometeorol., 35, 29–32, 1991. a es_ES
dc.description.references Broucek, J., Ryba, S., Mihina, S., Uhrincat, M., and Kisac, P.: Impact of thermal-humidity index on milk yield under conditions of different dairy management, J. Anim. Feed Sci., 16, 329–344, https://doi.org/10.22358/jafs/66755/2007, 2007. a, b es_ES
dc.description.references Brown-Brandl, T., Eigenberg, R., Nienaber, J., and Hahn, G. L.: Dynamic response indicators of heat stress in shaded and non-shaded feedlot cattle, Part 1: Analyses of indicators, Biosyst. Eng., 90, 451–462, 2005. a es_ES
dc.description.references Brügemann, K., Gernand, E., König von Borstel, U., and König, S.: Defining and evaluating heat stress thresholds in different dairy cow production systems, Arch. Anim. Breed., 55, 13–24, 2012. a es_ES
dc.description.references Cannon, A. J.: Multivariate quantile mapping bias correction: an N-dimensional probability density function transform for climate model simulations of multiple variables, Clim. Dynam., 50, 31–49, https://doi.org/10.1007/s00382-017-3580-6, 2018. a es_ES
dc.description.references Carabano, M.-J., Logar, B., Bormann, J., Minet, J., Vanrobays, M.-L., Diaz, C., Tychon, B., Gengler, N., and Hammami, H.: Modeling heat stress under different environmental conditions, J. Dairy Sci., 99, 3798–3814, 2016. a, b, c es_ES
dc.description.references Christensen, J., Hewitson, B., Busuioc, A., Chen, A., Gao, X., Held, I., Jones, R., Kolli, R., Kwon, W.-T., Laprise, R., Magaña Rueda, V., Mearns, L., Menéndez, C., Räisänen, J., Rinke, A., Sarr, A., and Whetton, P.: Regional Climate Projections, in: IPCC Climate Change 2007: The Physical Science Basis, edited by: Solomon, S., Qin, D., Manning, M., Hen, Z., Marquis, M., Averyt, K., Tignor, M., and Miller, H., Cambridge University Press, Cambridge, UK and New York, NY, USA, 2007. a es_ES
dc.description.references Collier, R. J., Hall, L. W., Rungruang, S., and Zimbleman, R. B.: Quantifying heat stress and its impact on metabolism and performance, Proc. Florida Ruminant Nutrition Symp, Department of Animal Sciences, University of Arizona, Gainesville, USA, p. 68, 2012. a, b, c es_ES
dc.description.references Cook, N., Mentink, R., Bennett, T., and Burgi, K.: The effect of heat stress and lameness on time budgets of lactating dairy cows, J. Dairy Sci., 90, 1674–1682, 2007. a, b es_ES
dc.description.references Curtis, A., Scharf, B., Eichen, P., and Spiers, D.: Relationships between ambient conditions, thermal status, and feed intake of cattle during summer heat stress with access to shade, J. Therm. Biol., 63, 104–111, 2017. a es_ES
dc.description.references da Costa, A. N. L., Feitosa, J. V., Montezuma, P. A., de Souza, P. T., and de Araújo, A. A.: Rectal temperatures, respiratory rates, production, and reproduction performances of crossbred Girolando cows under heat stress in northeastern Brazil, Int. J. Biometeorol., 59, 1647–1653, 2015. a, b es_ES
dc.description.references Da Silva, R. G., Maia, A. S. C., and de Macedo Costa, L. L.: Index of thermal stress for cows (ITSC) under high solar radiation in tropical environments, Int. J. Biometeorol., 59, 551–559, 2015. a es_ES
dc.description.references Davison, T., Jonsson, N., Mayer, D., Gaughan, J., Ehrlich, W., and McGowan, M.: Comparison of the impact of six heat-load management strategies on thermal responses and milk production of feed-pad and pasture fed dairy cows in a subtropical environment, Int. J. Biometeorol., 60, 1961–1968, 2016. a es_ES
dc.description.references Del Prado A., Scholefield D., Chadwick D., Misselbrook T., Haygarth P., Hopkins A., Dewhurst R., Jones R., Moorby J., Davison P., Lord E., Turner M., Aikman P., and Schröder J.: A modelling framework to identify new integrated dairy production systems, in: 21st General Meeting of the European Grassland Federation (EGF), 3–6 April 2006, Badajoz, Spain, 766–768, 2006. a es_ES
dc.description.references De Rensis, F. and Scaramuzzi, R. J.: Heat stress and seasonal effects on reproduction in the dairy cow – a review, Theriogenology, 60, 1139–1151, 2003. a es_ES
dc.description.references De Rensis, F., Garcia-Ispierto, I., and López-Gatius, F.: Seasonal heat stress: Clinical implications and hormone treatments for the fertility of dairy cows, Theriogenology, 84, 659–666, 2015. a es_ES
dc.description.references Diepen, C. v., Wolf, J., Keulen, H. V., and Rappoldt, C.: WOFOST: a simulation model of crop production, Soil Use Manage., 5, 16–24, 1989. a es_ES
dc.description.references Dikmen, S. and Hansen, P.: Is the temperature-humidity index the best indicator of heat stress in lactating dairy cows in a subtropical environment?, J. Dairy Sci., 92, 109–116, 2009. a, b es_ES
dc.description.references Dirksen, G., Gründer, H., Grunert, E., Krause, D., and Stöber, M.: Clinical examination of cattle, 3rd edn., Verlag Paul Parey, Berlin, Germany, 1990. a es_ES
dc.description.references Dosio, A.: Projections of climate change indices of temperature and precipitation from an ensemble of bias-adjusted high-resolution EURO-CORDEX regional climate models, J. Geophys. Res.-Atmos., 121, 5488–5511, 2016. a es_ES
dc.description.references Efron, B.: Bootstrap Methods: Another Look at the Jackknife, Ann. Stat., 7, 1–26, https://doi.org/10.1214/aos/1176344552, 1979. a es_ES
dc.description.references Efron, B. and Tibshirani, R.: Bootstrap Methods for Standard Errors, Confidence Intervals, and Other Measures of Statistical Accuracy, Stat. Sci., 1, 54–75, https://doi.org/10.1214/ss/1177013815, 1986. a es_ES
dc.description.references European Commission – EU FADN: EU Dairy Farms Report Based on 2016 FADN Data, avaialble at: https://ec.europa.eu/agriculture/fadn_en (last access: 11 April 2019), 2018. a es_ES
dc.description.references Fiedler, A., Fischer, J., Hempel, S., Saha, C., Loebsin, C., Berg, W., Amon, B., Brunsch, R., and Amon, T.: Flow fields within a dairy barn – Measurements, physical modelling and numerical simulation, in: Proceedings of the International Conference of Agricultural Engineering AgEng, 6–10 July 2014, Zürich, Switzerland, 1–5, 2014. a, b es_ES
dc.description.references Food and Agriculture Organization of the United Nations (FAO): The Impact of Disasters on Agriculture – Assessing the information gap, available at: http://www.fao.org/3/a-i7279e.pdf (last access: 10 September 2018), 2017. a es_ES
dc.description.references Ford, B.: An Overview of Hot-Deck Procedures, in: Incomplete Data in Sample Surveys: Theory and Bibliographies, edited by: Madow, W., Olkin, I., and Rubin, D., Academic Press, New York, USA, 1983. a es_ES
dc.description.references Fournel, S., Ouellet, V., and Charbonneau, É.: Practices for alleviating heat stress of dairy cows in humid continental climates: a literature review, Animals, 7, 37, https://doi.org/10.3390/ani7050037, 2017. a es_ES
dc.description.references Galán, E., Llonch, P., Villagrá, A., Levit, H., Pinto, S., and del Prado, A.: A systematic review of non-productivity-related animal-based indicators of heat stress resilience in dairy cattle, PloS one, 13, e0206520, https://doi.org/10.1371/journal.pone.0206520, 2018. a, b, c, d es_ES
dc.description.references Gaughan, J., Mader, T. L., Holt, S., and Lisle, A.: A new heat load index for feedlot cattle, J. Anim. Sci., 86, 226–234, 2008. a es_ES
dc.description.references Gebremedhin, K. and Wu, B.: Simulation of flow field of a ventilated and occupied animal space with different inlet and outlet conditions, J. Therm. Biol., 30, 343–353, 2005. a es_ES
dc.description.references Giorgi, F. and Gutowski Jr., W. J.: Regional dynamical downscaling and the CORDEX initiative, Annu. Rev. Env. Resour., 40, 467–490, 2015. a es_ES
dc.description.references Groenestein, C., Hutchings, N., Haenel, H., Amon, B., Menzi, H., Mikkelsen, M., Misselbrook, T., van Bruggen, C., Kupper, T., and Webb, J.: Comparison of ammonia emissions related to nitrogen use efficiency of livestock production in Europe, J. Clean. Prod., 211, 1162–1170, 2019. a es_ES
dc.description.references Gurney, K.: An Introduction to Neural Networks, UCL Press Limited an imprint of Taylor & Francis group, London, UK, 1997. a es_ES
dc.description.references Hahn, G.: Dynamic responses of cattle to thermal heat loads, J. Anim. Sci., 77, 10–20, 1999. a es_ES
dc.description.references Hammami, H., Carabaño, M.-J., Logar, B., Vanrobays, M.-L., and Gengler, N.: Genotype x Climate interactions for protein yield using four European Holstein Populations, in: Proceedings of 10th World Congress of Genetics Applied to Livestock Production, 17–22 August 2014, Vancouver, Canada, 2014. a es_ES
dc.description.references Heaton, J.: Artificial Intelligence for Humans, Volume 3: Deep Learning and Neural Networks, Artificial Intelligence for Humans Series, CreateSpace Independent Publishing Platform, Heaton Research, Inc., Chesterfield, USA, 2015. a es_ES
dc.description.references Heinicke, J., Hoffmann, G., Ammon, C., Amon, B., and Amon, T.: Effects of the daily heat load duration exceeding determined heat load thresholds on activity traits of lactating dairy cows, J. Therm. Biol., 77, 67–74, 2018. a, b, c, d es_ES
dc.description.references Heinicke, J., Ibscher, S., Belik, V., and Amon, T.: Cow individual activity response to the accumulation of heat load duration, J. Therm. Biol., 82, 23–32, https://doi.org/10.1016/j.jtherbio.2019.03.011, 2019. a es_ES
dc.description.references Hempel, S. and Menz, C.: Indoor climate projections for European cattle barns, Mendeley Data, v1, https://doi.org/10.17632/tjp8h523p7.1, 2019. a es_ES
dc.description.references Hempel, S., Frieler, K., Warszawski, L., Schewe, J., and Piontek, F.: A trend-preserving bias correction – the ISI-MIP approach, Earth Syst. Dynam., 4, 219–236, https://doi.org/10.5194/esd-4-219-2013, 2013. a es_ES
dc.description.references Hempel, S., Wiedemann, L amd Ammon, C., Fiedler, A., Saha, C.and Janke, D. L. C., Fischer, J., Amon, B., Hoffmann, G., Menz, C., Zhang, G., Halachmi, I., Del Prado, A., Estelles, F., Berg, W., Brunsch, R., and Amon, T.: Determine the flow characteristics of naturally ventilated dairy barns to optimize barn climate, in: 12. Tagung: Bau, Technik und Umwelt 2015 in der landwirtschaftlichen Nutztierhaltung, 8–10 September, 2015, KTBL, Darmstadt, Germany, 346–351, 2015a. a es_ES
dc.description.references Hempel, S., Wiedemann, L., Ammon, C., Fiedler, M., Saha, C., Loebsin, C., Fischer, J., Berg, W., Brunsch, R., and Amon, T.: Assessment of the through-flow patterns in naturally ventilated dairy barns – Three methods, one complex approach, in: RAMIRAN 2015 – Rural-Urban Symbiosis, edited by: Körner, I., TC-O_16, TUTech Verlag, Hamburg, Germany, Hamburg University of Technology, Germany, 356–359, e-book, 2015b. a es_ES
dc.description.references Hempel, S., Janke, D., König, M., Menz, C., Englisch, A., Pinto, S., Sibony, V., Halachmi, I., Rong, L., Zong, C., Zhang, G., Sanchis, E., Estelle, F., Calvet, S., Galan, E., del Prado, A., Ammon, C., Amon, B., and Amon, T.: Integrated modelling to assess optimisation potentials for cattle housing climate, Advances in Animal Biosciences, 7, 261–262, https://doi.org/10.1017/S2040470016000352, 2016a. a, b es_ES
dc.description.references Hempel, S., Saha, C. K., Fiedler, M., Berg, W., Hansen, C., Amon, B., and Amon, T.: Non-linear temperature dependency of ammonia and methane emissions from a naturally ventilated dairy barn, Biosyst. Eng., 145, 10–21, 2016b. a, b, c, d es_ES
dc.description.references Hempel, S., Menz, C., Halachmi, I., Zhang, G., del Prado, A., Estelles, F., Amon, B., and Amon, T.: Report on FACCE-JPI valorisation meeting, available at: https://www.faccejpi.com/content/download/5161/48933/version/1/file/FACCE-JPI_Synthesis-valorisation-survey-results-FINAL.pdf (last access: 11 April 2019), 2017a. a es_ES
dc.description.references Hempel, S., Menz, C., Halachmi, I., Zhang, G., del Prado, A., Estelles, F., Amon, B., and Amon, T.: Report on ERANET+ mid-term meeting, available at: https://www.faccejpi.com/content/download/5163/48955/version/2/file/Projects+booklet_updated+08+May+2017.pdf (last access: 11 April 2019), 2017b. a es_ES
dc.description.references Hempel, S., Menz, C., Halachmi, I., Zhang, G., del Prado, A., Estelles, F., Amon, B., and Amon, T.: Report on ERANET+ mid-term meeting, available at: https://www.faccejpi.com/content/download/5295/50720/version/1/file/OptiBarn_presentation_ERA_NET+final+meeting+March18[1].pdf (last access: 11 April 2019), 2017c. a es_ES
dc.description.references Hempel, S., König, M., Menz, C., Janke, D., Amon, B., Banhazi, T. M., Estellés, F., and Amon, T.: Uncertainty in the measurement of indoor temperature and humidity in naturally ventilated dairy buildings as influenced by measurement technique and data variability, Biosyst. Eng., 166, 58–75, 2018. a, b, c, d es_ES
dc.description.references Herbut, P. and Angrecka, S.: Relationship between THI level and dairy cows’ behaviour during summer period, Ital. J. Anim. Sci., 17, 226–233, 2018. a es_ES
dc.description.references Herbut, P., Angrecka, S., Nawalany, G., and Adamczyk, K.: Spatial and temporal distribution of temperature, relative humidity and air velocity in a parallel milking parlour during summer period, Ann. Anim. Sci., 15, 517–526, 2015. a es_ES
dc.description.references Hoffmann, I.: Climate change and the characterization, breeding and conservation of animal genetic resources, Anim. Genet., 41, 32–46, 2010. a es_ES
dc.description.references Honig, H., Miron, J., Lehrer, H., Jackoby, S., Zachut, M., Zinou, A., Portnick, Y., and Moallem, U.: Performance and welfare of high-yielding dairy cows subjected to 5 or 8 cooling sessions daily under hot and humid climate, J. Dairy Sci., 95, 3736–3742, 2012. a, b, c, d es_ES
dc.description.references Hübener, H., Bülow, K., Fooken, C., Früh, B., Hoffmann, P., Höpp, S., Keuler, K., Menz, C., Mohr, V., Radtke, K., Ramthun, H., Spekat, A., Steger, C., Toussaint, F., Warrach-Sagi, K., and Woldt, M.: ReKliEs-De Ergebnisbericht, Tech. rep., World Data Center for Climate (WDCC) at DKRZ, Hamburg, Germany, https://doi.org/10.2312/WDCC/ReKliEsDe_Ergebnisbericht, 2017. a es_ES
dc.description.references Hutchings, N., Sommer, S. G., and Jarvis, S.: A model of ammonia volatilization from a grazing livestock farm, Atmos. Environ., 30, 589–599, 1996. a es_ES
dc.description.references Jackson, P. and Cockcroft, P.: Clinical examination of farm animals, Wiley-Backwell, Hoboken, USA, 2008. a es_ES
dc.description.references Kadzere, C., Murphy, M., Silanikove, N., and Maltz, E.: Heat stress in lactating dairy cows: a review, Livest. Sci., 77, 59–91, 2002. a, b, c, d, e es_ES
dc.description.references Kafle, G. K., Joo, H., and Ndegwa, P. M.: Sampling Duration and Frequency for Determining Emission Rates from Naturally Ventilated Dairy Barns, T. ASABE, 61, 681–691, https://doi.org/10.13031/trans.12543, 2018. a es_ES
dc.description.references Kendall, P., Nielsen, P., Webster, J., Verkerk, G., Littlejohn, R., and Matthews, L.: The effects of providing shade to lactating dairy cows in a temperate climate, Livest. Sci., 103, 148–157, 2006. a es_ES
dc.description.references Kjellström, E., Nikulin, G., Strandberg, G., Christensen, O. B., Jacob, D., Keuler, K., Lenderink, G., van Meijgaard, E., Schär, C., Somot, S., Sørland, S. L., Teichmann, C., and Vautard, R.: European climate change at global mean temperature increases of 1.5 and 2 °C above pre-industrial conditions as simulated by the EURO-CORDEX regional climate models, Earth Syst. Dynam., 9, 459–478, https://doi.org/10.5194/esd-9-459-2018, 2018. a, b es_ES
dc.description.references Kurukulasuriya, P. and Rosenthal, S.: Climate change and agriculture: A review of impacts and adaptations, Environment department papers, no. 91, Climate change series, World Bank, Washington, D.C., USA, 2013. a es_ES
dc.description.references Lees, J., Lees, A., and Gaughan, J.: Developing a heat load index for lactating dairy cows, Anim. Prod. Sci., 58, 1387–1391, https://doi.org/10.1071/AN17776, 2018. a, b es_ES
dc.description.references Lelieveld, J., Evans, J. S., Fnais, M., Giannadaki, D., and Pozzer, A.: The contribution of outdoor air pollution sources to premature mortality on a global scale, Nature, 525, 367–371, 2015. a es_ES
dc.description.references Mader, T. L., Davis, M., and Brown-Brandl, T.: Environmental factors influencing heat stress in feedlot cattle, J. Anim. Sci., 84, 712–719, 2006. a, b, c es_ES
dc.description.references Mader, T. L., Johnson, L., and Gaughan, J.: A comprehensive index for assessing environmental stress in animals, J. Anim. Sci., 88, 2153–2165, 2010. a es_ES
dc.description.references Mendes, L. B., Edouard, N., Ogink, N. W., Van Dooren, H. J. C., Ilda de Fátima, F. T., and Mosquera, J.: Spatial variability of mixing ratios of ammonia and tracer gases in a naturally ventilated dairy cow barn, Biosyst. Eng., 129, 360–369, 2015. a es_ES
dc.description.references Monteny, G., Groenestein, C., and Hilhorst, M.: Interactions and coupling between emissions of methane and nitrous oxide from animal husbandry, Nutr. Cycl. Agroecosys., 60, 123–132, 2001. a es_ES
dc.description.references Nardone, A., Ronchi, B., Lacetera, N., Ranieri, M. S., and Bernabucci, U.: Effects of climate changes on animal production and sustainability of livestock systems, Livest. Sci., 130, 57–69, 2010. a, b, c es_ES
dc.description.references NRC: A guide to environmental research on animals, National Academy of Science, Washington, D.C., USA, 1971. a es_ES
dc.description.references Olesen, J. E. and Bindi, M.: Consequences of climate change for European agricultural productivity, land use and policy, Eur. J. Agron., 16, 239–262, 2002. a es_ES
dc.description.references Ominski, K., Kennedy, A., Wittenberg, K., and Nia, S. M.: Physiological and production responses to feeding schedule in lactating dairy cows exposed to short-term, moderate heat stress, J. Dairy Sci., 85, 730–737, 2002. a es_ES
dc.description.references Ortiz, X., Smith, J., Rojano, F., Choi, C., Bruer, J., Steele, T., Schuring, N., Allen, J., and Collier, R.: Evaluation of conductive cooling of lactating dairy cows under controlled environmental conditions, J. Dairy Sci., 98, 1759–1771, 2015. a, b, c es_ES
dc.description.references Pachauri, R. K., Allen, M. R., Barros, V. R., Broome, J., Cramer, W., Christ, R., Church, J. A., Clarke, L., Dahe, Q., Dasgupta, P., Dubash, N. K., Edenhofer, O., Elgizouli, I., Field, C. B., Forster, P., Friedlingstein, P., Fuglestvedt, J., Gomez-Echeverri, L., Hallegatte, S., Hegerl, G., Howden, M., Jiang, K., Jimenez Cisneroz, B., Kattsov, V., Lee, H., Mach, K. J., Marotzke, J., Mastrandrea, M. D., Meyer, L., Minx, J., Mulugetta, Y., O'Brien, K., Oppenheimer, M., Pereira, J. J., Pichs-Madruga, R., Plattner, G. K., Pörtner, H. O., Power, S. B., Preston, B., Ravindranath, N. H., Reisinger, A., Riahi, K., Rusticucci, M., Scholes, R., Seyboth, K., Sokona, Y., Stavins, R., Stocker, T. F., Tschakert, P., van Vuuren, D., and van Ypserle, J. P.: Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Pachauri, R. and Meyer, L., Geneva, Switzerland, IPCC, 151 pp., 2014. a, b es_ES
dc.description.references Pedersen, S. and Sällvik, K.: Climatization of animal houses. Heat and moisture production at animal and house levels, Research Centre Bygholm, Danish Institute of Agricultural Sciences, Horsens, Denmark, 2002. a es_ES
dc.description.references Pinto, S., Levit, H., Müschner-Siemens, T., Hoffmann, G., Ammon, C., Halachmi, I., Heuwieser, W., and Amon, T.: Influence of evaporative cooling on respiration rate of lactating cows under hot climate conditions, in: New Engineering Concepts for Valued Agriculture. European Conference of Agricultural Engineering EurAgEng 2018, Wageningen, the Netherlands, 808–812, 2019a. a, b, c es_ES
dc.description.references Pinto, S., Hoffmann, G., Ammon, C., Amon, B., Heuwieser, W., Halachmi, I., Banhazi, T., and Amon, T.: Influence of barn climate, body postures and milk yield on the respiration rate of dairy cows, Ann. Anim. Sci., 19, 469–481, 2019b. a, b es_ES
dc.description.references Pinto, S., Hoffmann, G., Ammon, C., Heuwieser, W., Levit, H., Halachmi, I., and Amon, T.: Effect of two cooling frequencies on respiration rate in lactating dairy cows under hot and humid climate conditions, Ann. Anim. Sci., 19, 821–834, https://doi.org/10.2478/aoas-2019-0026, 2019c. a, b es_ES
dc.description.references Polsky, L. and von Keyserlingk, M. A.: Invited review: Effects of heat stress on dairy cattle welfare, J. Dairy Sci., 100, 8645–8657, 2017. a, b, c es_ES
dc.description.references Queiroz, M. P. G., Naas, I. d. A., and Sampaio, C. A. d. P.: Estimating thermal comfort for piglets considering ammonia concentration, E-journal – CIGR, 7, 05 004/BC 05 005, 1–10, 2005. a es_ES
dc.description.references Ravagnolo, O. and Misztal, I.: Genetic component of heat stress in dairy cattle, parameter estimation, J. Dairy Sci., 83, 2126–2130, 2000. a es_ES
dc.description.references Rushen, J., Munksgaard, L., Marnet, P., and DePassillé, A.: Human contact and the effects of acute stress on cows at milking, Appl. Anim. Behav. Sci., 73, 1–14, 2001. a es_ES
dc.description.references Sajeev, E. P. M., Amon, B., Ammon, C., Zollitsch, W., and Winiwarter, W.: Evaluating the potential of dietary crude protein manipulation in reducing ammonia emissions from cattle and pig manure: A meta-analysis, Nutr. Cycl. Agroecosys., 110, 161–175, 2018. a es_ES
dc.description.references Samer, M., Fiedler, M., Müller, H.-J., Gläser, M., Ammon, C., Berg, W., Sanftleben, P., and Brunsch, R.: Winter measurements of air exchange rates using tracer gas technique and quantification of gaseous emissions from a naturally ventilated dairy barn, Appl. Eng. Agric., 27, 1015–1025, 2011. a es_ES
dc.description.references Sanchis, E., Calvet, S., del Prado, A., and Estellés, F.: A meta-analysis of environmental factor effects on ammonia emissions from dairy cattle houses, Biosyst. Eng., 178, 176–183, 2019. a es_ES
dc.description.references Schüller, L.-K.: Influence of heat stress on the reproductive performance of dairy cows in the moderate climate of the temperate latitude, PhD thesis, Free University of Berlin, Berlin, Germany, 2015. a es_ES
dc.description.references Schütz, K. E., Cox, N. R., and Matthews, L. R.: How important is shade to dairy cattle? Choice between shade or lying following different levels of lying deprivation, Appl. Anim. Behav. Sci., 114, 307–318, 2008. a es_ES
dc.description.references Segnalini, M., Bernabucci, U., Vitali, A., Nardone, A., and Lacetera, N.: Temperature humidity index scenarios in the Mediterranean basin, Int. J. Biometeorol., 57, 451–458, 2013. a, b es_ES
dc.description.references Spiers, D., Spain, J., Sampson, J., and Rhoads, R.: Use of physiological parameters to predict milk yield and feed intake in heat-stressed dairy cows, J. Therm. Biol., 29, 759–764, 2004. a es_ES
dc.description.references Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., and Salakhutdinov, R.: Dropout: A Simple Way to Prevent Neural Networks from Overfitting, J. Mach. Learn. Res., 15, 1929–1958, 2014. a es_ES
dc.description.references Steinfeld, H., Mooney, H. A., Schneider, F., and Neville, L. E.: Livestock in a changing landscape, volume 1: drivers, consequences, and responses, Island Press, 2013. a es_ES
dc.description.references St-Pierre, N., Cobanov, B., and Schnitkey, G.: Economic losses from heat stress by US livestock industries1, J. Dairy Sci., 86, E52–E77, 2003. a, b es_ES
dc.description.references Strutzke, S., Fiske, D., Hoffmann, G., Ammon, C., Heuwieser, W., and Amon, T.: Development of a noninvasive respiration rate sensor for cattle, J. Dairy Sci., 2018. a es_ES
dc.description.references Sutton, M., Bleeker, A., Howard, C., Bekunda, M., Grizzetti, B., de Vries, W., van Grinsven, H., Abrol, Y., Adhya, T., Billen, G., Davidson, E., Datta, A., Diaz, R., Erisman, J., Liu, X., Oenema, O., Palm, C., Raghuram, N., Reis, S., Scholz, R., Sims, T., Westhoek, H., and Zhang, F.: Our Nutrient World: the challenge to produce more food and energy with less pollution, NERC/Centre for Ecology & Hydrology, Edinburgh, available at: http://nora.nerc.ac.uk/id/eprint/500700 (last access: 11 April 2019), 2013. a es_ES
dc.description.references Trenberth, K. E. and Smith, L.: The Mass of the Atmosphere: A Constraint on Global Analyses, J. Climate, 18, 864–875, https://doi.org/10.1175/JCLI-3299.1, 2005. a es_ES
dc.description.references Valtorta, S. E. and Gallardo, M. R.: Evaporative cooling for Holstein dairy cows under grazing conditions, Int. J. Biometeorol., 48, 213–217, 2004. a es_ES
dc.description.references van Oldenborgh, G., Collins, M., Arblaster, J., Christensen, J. H., Marotzke, J., Power, S., Rummukainen, M., and Zhou, T.: Annex I: Atlas of Global and Regional Climate Projections, in: Climate Change 2013: The Physical Science Basis, edited by: Stocker, T., Qin, D., Plattner, G.-K., Tignor, M., Allen, S., Boschung, J., Nauels, A., Xia, Y., Bex, V., and Midgley, P., Cambridge University Press, Cambridge, UK and New York, NY, USA, 2013.  a es_ES
dc.description.references Vitt, R., Weber, L., Zollitsch, W., Hörtenhuber, S. J., Baumgartner, J., Niebuhr, K., Piringer, M., Anders, I., Andre, K., Hennig-Pauka, I., Schönhart, M., and Schauberger, G.: Modelled performance of energy saving air treatment devices to mitigate heat stress for confined livestock buildings in Central Europe, Biosyst. Eng., 164, 85–97, 2017. a es_ES
dc.description.references Wang, X., Ndegwa, P. M., Joo, H., Neerackal, G. M., Stöckle, C. O., Liu, H., and Harrison, J. H.: Indirect method versus direct method for measuring ventilation rates in naturally ventilated dairy houses, Biosyst. Eng., 144, 13–25, 2016. a es_ES
dc.description.references Wang, X., Gao, H., Gebremedhin, K. G., Bjerg, B. S., Van Os, J., Tucker, C. B., and Zhang, G.: Corrigendum to “A predictive model of equivalent temperature index for dairy cattle (ETIC)”, J. Therm. Biol., 76, 165–170, 2018a. a es_ES
dc.description.references Wang, X., Gao, H., Gebremedhin, K. G., Bjerg, B. S., Van Os, J., Tucker, C. B., and Zhang, G.: A predictive model of equivalent temperature index for dairy cattle (ETIC), J. Therm. Biol., 76, 165–170, https://doi.org/10.1016/j.jtherbio.2018.07.013, 2018b. a, b, c, d es_ES
dc.description.references Wang, X., Zhang, G., and Choi, C. Y.: Evaluation of a precision air-supply system in naturally ventilated freestall dairy barns, Biosyst. Eng., 175, 1–15, 2018c. a es_ES
dc.description.references Warszawski, L., Frieler, K., Huber, V., Piontek, F., Serdeczny, O., and Schewe, J.: The inter-sectoral impact model intercomparison project (ISI–MIP): project framework, P. Natl. Acad. Sci. USA, 111, 3228–3232, 2014. a es_ES
dc.description.references Werbos, P. J.: Beyond Regression: New Tools for Prediction and Analysis in the Behavioral Sciences, PhD thesis, Harvard University, Cambridge, USA, 1974. a es_ES
dc.description.references West, J.: Effects of heat-stress on production in dairy cattle, J. Dairy Sci., 86, 2131–2144, 2003. a, b, c, d, e, f es_ES
dc.description.references Williams, J., Jones, C., Kiniry, J., and Spanel, D. A.: The EPIC crop growth model, T. ASAE, 32, 497–0511, 1989. a es_ES
dc.description.references WMO: WMO Statement on the state of the global climate in 2017, in: WMO-No.1212, Publications Board World Meteorological Organization (WMO), World Meteorological Organization, Geneva, Switzerland, 2018. a es_ES
dc.description.references Wu, W., Zhai, J., Zhang, G., and Nielsen, P. V.: Evaluation of methods for determining air exchange rate in a naturally ventilated dairy cattle building with large openings using computational fluid dynamics (CFD), Atmos. Environ., 63, 179–188, 2012. a es_ES
dc.description.references Yi, Q., König, M., Janke, D., Hempel, S., Zhang, G., Amon, B., and Amon, T.: Wind tunnel investigations of sidewall opening effects on indoor airflows of a cross-ventilated dairy building, Energ. Buildings, 175, 163–172, 2018. a, b, c, d es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem