- -

A Multichannel Microfluidic Sensing Cartridge for Bioanalytical Applications of Monolithic Quartz Crystal Microbalance

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

A Multichannel Microfluidic Sensing Cartridge for Bioanalytical Applications of Monolithic Quartz Crystal Microbalance

Show simple item record

Files in this item

dc.contributor.author Calero-Alcarria, María Del Señor es_ES
dc.contributor.author FERNÁNDEZ DÍAZ, ROMÁN es_ES
dc.contributor.author GARCIA MOLLA, PABLO es_ES
dc.contributor.author García Narbón, José Vicente es_ES
dc.contributor.author García, María es_ES
dc.contributor.author Gamero-Sandemetrio, Esther es_ES
dc.contributor.author Reviakine, Ilya es_ES
dc.contributor.author Arnau Vives, Antonio es_ES
dc.contributor.author Jiménez Jiménez, Yolanda es_ES
dc.date.accessioned 2020-11-28T04:32:05Z
dc.date.available 2020-11-28T04:32:05Z
dc.date.issued 2020-11-24 es_ES
dc.identifier.issn 2079-6374 es_ES
dc.identifier.uri http://hdl.handle.net/10251/156021
dc.description.abstract [EN] Integrating acoustic wave sensors into lab-on-a-chip (LoC) devices is a well-known challenge. We address this challenge by designing a microfluidic device housing a monolithic array of 24 high-fundamental frequency quartz crystal microbalance with dissipation (HFF-QCMD) sensors. The device features six 6-µL channels of four sensors each for low-volume parallel measurements, a sealing mechanism that provides appropriate pressure control while assuring liquid confinement and maintaining good stability, and provides a mechanical, electrical, and thermal interface with the characterization electronics. We validate the device by measuring the response of the HFF-QCMD sensors to the air-to-liquid transition, for which the robust Kanazawa¿Gordon¿Mason theory exists, and then by studying the adsorption of model bioanalytes (neutravidin and biotinylated albumin). With these experiments, we show how the effects of the protein¿surface interactions propagate within adsorbed protein multilayers, offering essentially new insight into the design of affinity-based bioanalytical sensors es_ES
dc.description.sponsorship This work was supported in part by Ministerio de Economía, Industria y Competitividad de España Agencia Estatal de Investigación with FEDER (Fondo Europeo de Desarrollo Regional) funds under Project AGL2016-77702-R and in part by the European Commission Horizon 2020 Programme, Capturing non-Amplified Tumor Circulating DA with Ultrasound Hidrodynamics, under Grant H2020-FETOPEN-2016-2017/737212-CATCH-U-DNA. M. Calero is the recipient of the doctoral fellowship BES-2017-080246 from the Ministerio de Economía, Industria y Competitividad de España. es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Biosensors es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject HFF-QCM (high fundamental frequency quartz crystal microbalance) es_ES
dc.subject Mass transport es_ES
dc.subject Flow cell es_ES
dc.subject Biosensor es_ES
dc.subject Food safety es_ES
dc.subject PoC (point of care) es_ES
dc.subject MQCM (monolithic quartz crystal microbalance) es_ES
dc.subject.classification TECNOLOGIA ELECTRONICA es_ES
dc.title A Multichannel Microfluidic Sensing Cartridge for Bioanalytical Applications of Monolithic Quartz Crystal Microbalance es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/bios10120189 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/737212/EU/Capturing non-Amplified Tumor Circulating DNA with Ultrasound Hydrodynamics/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//AGL2016-77702-R/ES/DISEÑO DE UN BIOSENSOR DE ADN BASADO EN TECNOLOGIA HFF-QCM PARA LA DETECCION DE SUSTANCIAS ADULTERANTES EN MIEL/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI//BES-2017-080246/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica es_ES
dc.description.bibliographicCitation Calero-Alcarria, MDS.; Fernández Díaz, R.; Garcia Molla, P.; García Narbón, JV.; García, M.; Gamero-Sandemetrio, E.; Reviakine, I.... (2020). A Multichannel Microfluidic Sensing Cartridge for Bioanalytical Applications of Monolithic Quartz Crystal Microbalance. Biosensors. 10(12):1-13. https://doi.org/10.3390/bios10120189 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/bios10120189 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 13 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 10 es_ES
dc.description.issue 12 es_ES
dc.relation.pasarela S\422278 es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Soper, S. A., Brown, K., Ellington, A., Frazier, B., Garcia-Manero, G., Gau, V., … Wilson, D. (2006). Point-of-care biosensor systems for cancer diagnostics/prognostics. Biosensors and Bioelectronics, 21(10), 1932-1942. doi:10.1016/j.bios.2006.01.006 es_ES
dc.description.references Lafleur, J. P., Jönsson, A., Senkbeil, S., & Kutter, J. P. (2016). Recent advances in lab-on-a-chip for biosensing applications. Biosensors and Bioelectronics, 76, 213-233. doi:10.1016/j.bios.2015.08.003 es_ES
dc.description.references Nasseri, B., Soleimani, N., Rabiee, N., Kalbasi, A., Karimi, M., & Hamblin, M. R. (2018). Point-of-care microfluidic devices for pathogen detection. Biosensors and Bioelectronics, 117, 112-128. doi:10.1016/j.bios.2018.05.050 es_ES
dc.description.references Sauerbrey, G. (1959). Verwendung von Schwingquarzen zur W�gung d�nner Schichten und zur Mikrow�gung. Zeitschrift f�r Physik, 155(2), 206-222. doi:10.1007/bf01337937 es_ES
dc.description.references Reviakine, I., Johannsmann, D., & Richter, R. P. (2011). Hearing What You Cannot See and Visualizing What You Hear: Interpreting Quartz Crystal Microbalance Data from Solvated Interfaces. Analytical Chemistry, 83(23), 8838-8848. doi:10.1021/ac201778h es_ES
dc.description.references Fernandez, R., Calero, M., Reiviakine, I., Garcia, J. V., Rocha-Gaso, M. I., Arnau, A., & Jimenez, Y. (2020). High Fundamental Frequency (HFF) Monolithic Resonator Arrays for Biosensing Applications: Design, Simulations, Experimental Characterization. IEEE Sensors Journal, 1-1. doi:10.1109/jsen.2020.3015011 es_ES
dc.description.references Tuantranont, A., Wisitsora-at, A., Sritongkham, P., & Jaruwongrungsee, K. (2011). A review of monolithic multichannel quartz crystal microbalance: A review. Analytica Chimica Acta, 687(2), 114-128. doi:10.1016/j.aca.2010.12.022 es_ES
dc.description.references Kao, P., Allara, D., & Tadigadapa, S. (2009). Fabrication and performance characteristics of high-frequency micromachined bulk acoustic wave quartz resonator arrays. Measurement Science and Technology, 20(12), 124007. doi:10.1088/0957-0233/20/12/124007 es_ES
dc.description.references Zimmermann, B., Lucklum, R., Hauptmann, P., Rabe, J., & Büttgenbach, S. (2001). Electrical characterisation of high-frequency thickness-shear-mode resonators by impedance analysis. Sensors and Actuators B: Chemical, 76(1-3), 47-57. doi:10.1016/s0925-4005(01)00567-6 es_ES
dc.description.references Fernández, R., García, P., García, M., García, J., Jiménez, Y., & Arnau, A. (2017). Design and Validation of a 150 MHz HFFQCM Sensor for Bio-Sensing Applications. Sensors, 17(9), 2057. doi:10.3390/s17092057 es_ES
dc.description.references March, C., García, J. V., Sánchez, Á., Arnau, A., Jiménez, Y., García, P., … Montoya, Á. (2015). High-frequency phase shift measurement greatly enhances the sensitivity of QCM immunosensors. Biosensors and Bioelectronics, 65, 1-8. doi:10.1016/j.bios.2014.10.001 es_ES
dc.description.references Cervera-Chiner, L., Juan-Borrás, M., March, C., Arnau, A., Escriche, I., Montoya, Á., & Jiménez, Y. (2018). High Fundamental Frequency Quartz Crystal Microbalance (HFF-QCM) immunosensor for pesticide detection in honey. Food Control, 92, 1-6. doi:10.1016/j.foodcont.2018.04.026 es_ES
dc.description.references Cervera‐Chiner, L., March, C., Arnau, A., Jiménez, Y., & Montoya, Á. (2020). Detection of DDT and carbaryl pesticides in honey by means of immunosensors based on high fundamental frequency quartz crystal microbalance (HFF‐QCM). Journal of the Science of Food and Agriculture, 100(6), 2468-2472. doi:10.1002/jsfa.10267 es_ES
dc.description.references Montoya, A., March, C., Montagut, Y., Moreno, M., Manclus, J., Arnau, A., … Torres, R. (2017). A High Fundamental Frequency (HFF)-based QCM Immunosensor for Tuberculosis Detection. Current Topics in Medicinal Chemistry, 17(14), 1623-1630. doi:10.2174/1568026617666161104105210 es_ES
dc.description.references Milioni, D., Mateos-Gil, P., Papadakis, G., Tsortos, A., Sarlidou, O., & Gizeli, E. (2020). Acoustic Methodology for Selecting Highly Dissipative Probes for Ultrasensitive DNA Detection. Analytical Chemistry, 92(12), 8186-8193. doi:10.1021/acs.analchem.0c00366 es_ES
dc.description.references Papadakis, G., Palladino, P., Chronaki, D., Tsortos, A., & Gizeli, E. (2017). Sample-to-answer acoustic detection of DNA in complex samples. Chemical Communications, 53(57), 8058-8061. doi:10.1039/c6cc10175e es_ES
dc.description.references Papadakis, G., Murasova, P., Hamiot, A., Tsougeni, K., Kaprou, G., Eck, M., … Gizeli, E. (2018). Micro-nano-bio acoustic system for the detection of foodborne pathogens in real samples. Biosensors and Bioelectronics, 111, 52-58. doi:10.1016/j.bios.2018.03.056 es_ES
dc.description.references El Fissi, L., Fernández, R., García, P., Calero, M., García, J. V., Jiménez, Y., … Francis, L. A. (2019). OSTEMER polymer as a rapid packaging of electronics and microfluidic system on PCB. Sensors and Actuators A: Physical, 285, 511-518. doi:10.1016/j.sna.2018.11.050 es_ES
dc.description.references Papadakis, G., Friedt, J. M., Eck, M., Rabus, D., Jobst, G., & Gizeli, E. (2017). Optimized acoustic biochip integrated with microfluidics for biomarkers detection in molecular diagnostics. Biomedical Microdevices, 19(3). doi:10.1007/s10544-017-0159-2 es_ES
dc.description.references Jaeblon, T. (2010). Polymethylmethacrylate: Properties and Contemporary Uses in Orthopaedics. American Academy of Orthopaedic Surgeon, 18(5), 297-305. doi:10.5435/00124635-201005000-00006 es_ES
dc.description.references Kanazawa, K. K., & Gordon, J. G. (1985). Frequency of a quartz microbalance in contact with liquid. Analytical Chemistry, 57(8), 1770-1771. doi:10.1021/ac00285a062 es_ES
dc.description.references Daikhin, L., & Michael Urbakh, and. (1997). Influence of surface roughness on the quartz crystal microbalance response in a solution New configuration for QCM studies. Faraday Discussions, 107, 27-38. doi:10.1039/a703124f es_ES
dc.description.references Martin, S. J., Granstaff, V. E., & Frye, G. C. (1991). Characterization of a quartz crystal microbalance with simultaneous mass and liquid loading. Analytical Chemistry, 63(20), 2272-2281. doi:10.1021/ac00020a015 es_ES
dc.description.references Wilchek, M., & Bayer, E. A. (1988). The avidin-biotin complex in bioanalytical applications. Analytical Biochemistry, 171(1), 1-32. doi:10.1016/0003-2697(88)90120-0 es_ES
dc.description.references Diamandis, E. P., & Christopoulos, T. K. (1991). The biotin-(strept)avidin system: principles and applications in biotechnology. Clinical Chemistry, 37(5), 625-636. doi:10.1093/clinchem/37.5.625 es_ES
dc.description.references Pettersen, E. F., Goddard, T. D., Huang, C. C., Couch, G. S., Greenblatt, D. M., Meng, E. C., & Ferrin, T. E. (2004). UCSF Chimera?A visualization system for exploratory research and analysis. Journal of Computational Chemistry, 25(13), 1605-1612. doi:10.1002/jcc.20084 es_ES
dc.description.references Wolny, P. M., Spatz, J. P., & Richter, R. P. (2010). On the Adsorption Behavior of Biotin-Binding Proteins on Gold and Silica. Langmuir, 26(2), 1029-1034. doi:10.1021/la902226b es_ES
dc.description.references Marttila, A. T., Laitinen, O. H., Airenne, K. J., Kulik, T., Bayer, E. A., Wilchek, M., & Kulomaa, M. S. (2000). Recombinant NeutraLite Avidin: a non-glycosylated, acidic mutant of chicken avidin that exhibits high affinity for biotin and low non-specific binding properties. FEBS Letters, 467(1), 31-36. doi:10.1016/s0014-5793(00)01119-4 es_ES
dc.description.references KIM, N. H., BAEK, T. J., PARK, H. G., & SEONG, G. H. (2007). Highly Sensitive Biomolecule Detection on a Quartz Crystal Microbalance Using Gold Nanoparticles as Signal Amplification Probes. Analytical Sciences, 23(2), 177-181. doi:10.2116/analsci.23.177 es_ES
dc.description.references Ogi, H., Naga, H., Fukunishi, Y., Hirao, M., & Nishiyama, M. (2009). 170-MHz Electrodeless Quartz Crystal Microbalance Biosensor: Capability and Limitation of Higher Frequency Measurement. Analytical Chemistry, 81(19), 8068-8073. doi:10.1021/ac901267b es_ES
dc.description.references Sagmeister, B. P., Graz, I. M., Schwödiauer, R., Gruber, H., & Bauer, S. (2009). User-friendly, miniature biosensor flow cell for fragile high fundamental frequency quartz crystal resonators. Biosensors and Bioelectronics, 24(8), 2643-2648. doi:10.1016/j.bios.2009.01.023 es_ES
dc.description.references Uttenthaler, E., Schräml, M., Mandel, J., & Drost, S. (2001). Ultrasensitive quartz crystal microbalance sensors for detection of M13-Phages in liquids. Biosensors and Bioelectronics, 16(9-12), 735-743. doi:10.1016/s0956-5663(01)00220-2 es_ES
dc.description.references Squires, T. M., Messinger, R. J., & Manalis, S. R. (2008). Making it stick: convection, reaction and diffusion in surface-based biosensors. Nature Biotechnology, 26(4), 417-426. doi:10.1038/nbt1388 es_ES


This item appears in the following Collection(s)

Show simple item record