- -

Circuit Topologies for MOS-Type Gas Sensor

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Circuit Topologies for MOS-Type Gas Sensor

Mostrar el registro completo del ítem

Cervera Gomez, J.; Pelegri-Sebastia, J.; Lajara, JR. (2020). Circuit Topologies for MOS-Type Gas Sensor. Electronics. 9(3):1-14. https://doi.org/10.3390/electronics9030525

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/156023

Ficheros en el ítem

Metadatos del ítem

Título: Circuit Topologies for MOS-Type Gas Sensor
Autor: Cervera Gomez, Javier Pelegri-Sebastia, Jose Lajara, Jose Rafael
Entidad UPV: Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica
Fecha difusión:
Resumen:
[EN] Metal Oxide Semiconductor or MOS-type gas sensors are resistive sensors which can detect different reducible or volatile gases in atmospheres with oxygen. These gas sensors have been used in different areas such as ...[+]
Palabras clave: Electronic nose , Sensor arrays , Environmental analysis , Anderson loop , Wheatstone bridge
Derechos de uso: Reconocimiento (by)
Fuente:
Electronics. (eissn: 2079-9292 )
DOI: 10.3390/electronics9030525
Editorial:
MDPI AG
Versión del editor: https://doi.org/10.3390/electronics9030525
Código del Proyecto:
info:eu-repo/grantAgreement/GVA//AICO%2F2016%2F046/
Agradecimientos:
This research was funded by the I +D +i Program of the Generalitat Valenciana [AICO/2016/046], Spain.
Tipo: Artículo

References

Chilo, J., Pelegri-Sebastia, J., Cupane, M., & Sogorb, T. (2016). E-nose application to food industry production. IEEE Instrumentation & Measurement Magazine, 19(1), 27-33. doi:10.1109/mim.2016.7384957

Yang, Z., Huang, Y., Chen, G., Guo, Z., Cheng, S., & Huang, S. (2009). Ethanol gas sensor based on Al-doped ZnO nanomaterial with many gas diffusing channels. Sensors and Actuators B: Chemical, 140(2), 549-556. doi:10.1016/j.snb.2009.04.052

Mirzaei, A., Park, S., Sun, G.-J., Kheel, H., Lee, C., & Lee, S. (2016). Fe2O3/Co3O4 composite nanoparticle ethanol sensor. Journal of the Korean Physical Society, 69(3), 373-380. doi:10.3938/jkps.69.373 [+]
Chilo, J., Pelegri-Sebastia, J., Cupane, M., & Sogorb, T. (2016). E-nose application to food industry production. IEEE Instrumentation & Measurement Magazine, 19(1), 27-33. doi:10.1109/mim.2016.7384957

Yang, Z., Huang, Y., Chen, G., Guo, Z., Cheng, S., & Huang, S. (2009). Ethanol gas sensor based on Al-doped ZnO nanomaterial with many gas diffusing channels. Sensors and Actuators B: Chemical, 140(2), 549-556. doi:10.1016/j.snb.2009.04.052

Mirzaei, A., Park, S., Sun, G.-J., Kheel, H., Lee, C., & Lee, S. (2016). Fe2O3/Co3O4 composite nanoparticle ethanol sensor. Journal of the Korean Physical Society, 69(3), 373-380. doi:10.3938/jkps.69.373

Du, H., Xie, G., Su, Y., Tai, H., Du, X., Yu, H., & Zhang, Q. (2019). A New Model and Its Application for the Dynamic Response of RGO Resistive Gas Sensor. Sensors, 19(4), 889. doi:10.3390/s19040889

Xie, D., Chen, D., Peng, S., Yang, Y., Xu, L., & Wu, F. (2019). A Low Power Cantilever-Based Metal Oxide Semiconductor Gas Sensor. IEEE Electron Device Letters, 40(7), 1178-1181. doi:10.1109/led.2019.2914271

Su, Y., Xie, G., Tai, H., Li, S., Yang, B., Wang, S., … Jiang, Y. (2018). Self-powered room temperature NO2 detection driven by triboelectric nanogenerator under UV illumination. Nano Energy, 47, 316-324. doi:10.1016/j.nanoen.2018.02.031

Wang, S., Jiang, Y., Tai, H., Liu, B., Duan, Z., Yuan, Z., … Su, Y. (2019). An integrated flexible self-powered wearable respiration sensor. Nano Energy, 63, 103829. doi:10.1016/j.nanoen.2019.06.025

Chen, J., & Wang, Z. L. (2017). Reviving Vibration Energy Harvesting and Self-Powered Sensing by a Triboelectric Nanogenerator. Joule, 1(3), 480-521. doi:10.1016/j.joule.2017.09.004

Anderson, K. F. (1998). NASA’s Anderson Loop. IEEE Instrumentation & Measurement Magazine, 1(1), 5-15, 30. doi:10.1109/5289.658270

Anderson, K. F. (2000). THE LOOP TECHNIQUE FOR STRAIN GAGE ROSETTE SIGNAL CONDITIONING. Experimental Techniques, 24(1), 21-23. doi:10.1111/j.1747-1567.2000.tb01330.x

Albornoz, A. D. C. de, Ramírez Muñoz, D., Moreno, J. S., Berga, S. C., & Antón, E. N. (2008). A new gas sensor electronic interface with generalized impedance converter. Sensors and Actuators B: Chemical, 134(2), 591-596. doi:10.1016/j.snb.2008.06.001

3.1.1. STEMlab 125-10 vs. STEMlab 125-14 (Originally Red Pitaya v1.1)—Red Pitaya STEMlab 0.97 Documentationhttps://redpitaya.readthedocs.io/en/latest/developerGuide/125-10/vs.html

New Feature: High Speed Continuous Recording—Redpitaya Forumhttps://forum.redpitaya.com/viewtopic.php?f=7&t=317

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem