- -

Antifouling zwitterionic pSBMA-MSN particles for biomedical applications

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Antifouling zwitterionic pSBMA-MSN particles for biomedical applications

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Beltrán-Osuna, A.A. es_ES
dc.contributor.author Ródenas Rochina, Joaquín es_ES
dc.contributor.author Gómez Ribelles, José Luís es_ES
dc.contributor.author Perilla-Perilla, Jairo Ernesto es_ES
dc.date.accessioned 2020-11-28T04:32:14Z
dc.date.available 2020-11-28T04:32:14Z
dc.date.issued 2019-03 es_ES
dc.identifier.issn 1042-7147 es_ES
dc.identifier.uri http://hdl.handle.net/10251/156025
dc.description.abstract [EN] Mesoporous silica nanoparticles (MSNs) are one of the most promising nanocarriers in biomedicine. Nonetheless, surface modification has been pointed out as a condition necessary for drug delivery applications, where stability and biocompatibility are extremely important for the vehicle performance. Likewise, zwitterionic polymers are outstanding candidates in biological fields, where poly(sulfobetaine methacrylate) (pSBMA) has been widely studied. These polymers, known as antifouling materials, are able to render a surface capacity to avoid protein adhesion. In this work, a core-shell nanocarrier was created, where pSBMA was covalently grafted by atom transfer radical polymerization (ATRP) onto a previously functionalized MSN surface. Brush morphologies with different chain lengths (M over bar n, between 6500 and 32 300) and graft densities (sigma(pSBMA), between 0.15 and 0.51 molecules of pSBMA per nm(2) of MSN) were obtained. Protein adhesion resistance was evaluated with two proteins: fibronectin (FN) and bovine serum albumin (BSA). The best nanocarrier synthesized allowed a reduction of 96% of FN and 76% of BSA adhesion (compared with an adsorption of 100% assigned to the native material). Since the influence of the brush morphology is seldom studied or reported, this work aims to comprehend how the configuration of the polymer brushes affected their antifouling capacity, in order to use this pSBMA-MSN product for biomedical applications, notably as a possible drug delivery nanocarrier. Future work will analyze the solution behavior of the zwitterionic brushes to evaluate variations of temperature and pH values as possible mechanisms of delivery. es_ES
dc.description.sponsorship José L. Gómez Ribelles acknowledges the support of the Ministerio de Economía y Competitividad, MINECO (research number MAT2016-76039-C4-1-R). CIBER-BBN is an initiative funded by the VI National R&D&i Plan 2008-2011, Iniciativa Ingenio 2010, Consolider Program, CIBER Actions and financed by the Instituto de Salud Carlos III with assistance from the European Regional Development Fund. This work was also supported by COLCIENCIAS (Departamento Administrativo de Ciencia Tecnología e Innovación, Convocatoria 567 Doctorados Nacionales) and Universidad Nacional de Colombia (grant number DIB 201010021438). The authors acknowledge the assistance from the Microscopy Service at the Universitat Politècnica de València where all micrographs were taken. es_ES
dc.language Inglés es_ES
dc.publisher John Wiley & Sons es_ES
dc.relation.ispartof Polymers for Advanced Technologies es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Antifouling es_ES
dc.subject ATRP es_ES
dc.subject Drug carrier es_ES
dc.subject MSN es_ES
dc.subject Sulfobetaine methacrylate es_ES
dc.subject Zwitterionic es_ES
dc.subject.classification INGENIERIA QUIMICA es_ES
dc.subject.classification MAQUINAS Y MOTORES TERMICOS es_ES
dc.title Antifouling zwitterionic pSBMA-MSN particles for biomedical applications es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1002/pat.4505 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//MAT2016-76039-C4-1-R/ES/BIOMATERIALES PIEZOELECTRICOS PARA LA DIFERENCIACION CELULAR EN INTERFASES CELULA-MATERIAL ELECTRICAMENTE ACTIVAS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UNAL//DIB 201010021438/ es_ES
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Termodinámica Aplicada - Departament de Termodinàmica Aplicada es_ES
dc.description.bibliographicCitation Beltrán-Osuna, A.; Ródenas Rochina, J.; Gómez Ribelles, JL.; Perilla-Perilla, JE. (2019). Antifouling zwitterionic pSBMA-MSN particles for biomedical applications. Polymers for Advanced Technologies. 30(3):688-697. https://doi.org/10.1002/pat.4505 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1002/pat.4505 es_ES
dc.description.upvformatpinicio 688 es_ES
dc.description.upvformatpfin 697 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 30 es_ES
dc.description.issue 3 es_ES
dc.relation.pasarela S\404026 es_ES
dc.contributor.funder Instituto de Salud Carlos III es_ES
dc.contributor.funder Universidad Nacional de Colombia es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.contributor.funder Departamento Administrativo de Ciencia, Tecnología e Innovación, Colombia es_ES
dc.description.references Gold Book I IUPAC Compendium of Chemical Terminology-Gold Book 2014 es_ES
dc.description.references Owens, G. J., Singh, R. K., Foroutan, F., Alqaysi, M., Han, C.-M., Mahapatra, C., … Knowles, J. C. (2016). Sol–gel based materials for biomedical applications. Progress in Materials Science, 77, 1-79. doi:10.1016/j.pmatsci.2015.12.001 es_ES
dc.description.references Baeza, A., Manzano, M., Colilla, M., & Vallet-Regí, M. (2016). Recent advances in mesoporous silica nanoparticles for antitumor therapy: our contribution. Biomaterials Science, 4(5), 803-813. doi:10.1039/c6bm00039h es_ES
dc.description.references Butler, K. S., Durfee, P. N., Theron, C., Ashley, C. E., Carnes, E. C., & Brinker, C. J. (2016). Protocells: Modular Mesoporous Silica Nanoparticle-Supported Lipid Bilayers for Drug Delivery. Small, 12(16), 2173-2185. doi:10.1002/smll.201502119 es_ES
dc.description.references Peng, H., Dong, R., Wang, S., Zhang, Z., Luo, M., Bai, C., … Xiong, H. (2013). A pH-responsive nano-carrier with mesoporous silica nanoparticles cores and poly(acrylic acid) shell-layers: Fabrication, characterization and properties for controlled release of salidroside. International Journal of Pharmaceutics, 446(1-2), 153-159. doi:10.1016/j.ijpharm.2013.01.071 es_ES
dc.description.references Wang, L.-S., Wu, L.-C., Lu, S.-Y., Chang, L.-L., Teng, I.-T., Yang, C.-M., & Ho, J. A. (2010). Biofunctionalized Phospholipid-Capped Mesoporous Silica Nanoshuttles for Targeted Drug Delivery: Improved Water Suspensibility and Decreased Nonspecific Protein Binding. ACS Nano, 4(8), 4371-4379. doi:10.1021/nn901376h es_ES
dc.description.references Beltrán-Osuna, Á. A., Cao, B., Cheng, G., Jana, S. C., Espe, M. P., & Lama, B. (2012). New Antifouling Silica Hydrogel. Langmuir, 28(25), 9700-9706. doi:10.1021/la301561j es_ES
dc.description.references Beltrán-Osuna, Á. A., & Perilla, J. E. (2015). Colloidal and spherical mesoporous silica particles: synthesis and new technologies for delivery applications. Journal of Sol-Gel Science and Technology, 77(2), 480-496. doi:10.1007/s10971-015-3874-2 es_ES
dc.description.references Shao, Q., & Jiang, S. (2014). Molecular Understanding and Design of Zwitterionic Materials. Advanced Materials, 27(1), 15-26. doi:10.1002/adma.201404059 es_ES
dc.description.references Zheng, L., Sundaram, H. S., Wei, Z., Li, C., & Yuan, Z. (2017). Applications of zwitterionic polymers. Reactive and Functional Polymers, 118, 51-61. doi:10.1016/j.reactfunctpolym.2017.07.006 es_ES
dc.description.references Izquierdo-Barba, I., Colilla, M., & Vallet-Regí, M. (2016). Zwitterionic ceramics for biomedical applications. Acta Biomaterialia, 40, 201-211. doi:10.1016/j.actbio.2016.02.027 es_ES
dc.description.references Laschewsky, A. (2014). Structures and Synthesis of Zwitterionic Polymers. Polymers, 6(5), 1544-1601. doi:10.3390/polym6051544 es_ES
dc.description.references Zhang, Z., Chen, S., Chang, Y., & Jiang, S. (2006). Surface Grafted Sulfobetaine Polymers via Atom Transfer Radical Polymerization as Superlow Fouling Coatings. The Journal of Physical Chemistry B, 110(22), 10799-10804. doi:10.1021/jp057266i es_ES
dc.description.references Zhang, Z., Chao, T., Chen, S., & Jiang, S. (2006). Superlow Fouling Sulfobetaine and Carboxybetaine Polymers on Glass Slides. Langmuir, 22(24), 10072-10077. doi:10.1021/la062175d es_ES
dc.description.references Carr, L. R., Xue, H., & Jiang, S. (2011). Functionalizable and nonfouling zwitterionic carboxybetaine hydrogels with a carboxybetaine dimethacrylate crosslinker. Biomaterials, 32(4), 961-968. doi:10.1016/j.biomaterials.2010.09.067 es_ES
dc.description.references Yang, W., Chen, S., Cheng, G., Vaisocherová, H., Xue, H., Li, W., … Jiang, S. (2008). Film Thickness Dependence of Protein Adsorption from Blood Serum and Plasma onto Poly(sulfobetaine)-Grafted Surfaces. Langmuir, 24(17), 9211-9214. doi:10.1021/la801487f es_ES
dc.description.references Cheng, G., Li, G., Xue, H., Chen, S., Bryers, J. D., & Jiang, S. (2009). Zwitterionic carboxybetaine polymer surfaces and their resistance to long-term biofilm formation. Biomaterials, 30(28), 5234-5240. doi:10.1016/j.biomaterials.2009.05.058 es_ES
dc.description.references Liu, Q., Li, W., Singh, A., Cheng, G., & Liu, L. (2014). Two amino acid-based superlow fouling polymers: Poly(lysine methacrylamide) and poly(ornithine methacrylamide). Acta Biomaterialia, 10(7), 2956-2964. doi:10.1016/j.actbio.2014.02.046 es_ES
dc.description.references Zheng, L., Sun, Z., Li, C., Wei, Z., Jain, P., & Wu, K. (2017). Progress in biodegradable zwitterionic materials. Polymer Degradation and Stability, 139, 1-19. doi:10.1016/j.polymdegradstab.2017.03.015 es_ES
dc.description.references Wang, F., Yang, J., & Zhao, J. (2015). Understanding anti-polyelectrolyte behavior of a well-defined polyzwitterion at the single-chain level. Polymer International, 64(8), 999-1005. doi:10.1002/pi.4907 es_ES
dc.description.references Shao, Q., & Jiang, S. (2014). Influence of Charged Groups on the Properties of Zwitterionic Moieties: A Molecular Simulation Study. The Journal of Physical Chemistry B, 118(27), 7630-7637. doi:10.1021/jp5027114 es_ES
dc.description.references Ji, Y.-L., An, Q.-F., Weng, X.-D., Hung, W.-S., Lee, K.-R., & Gao, C.-J. (2018). Microstructure and performance of zwitterionic polymeric nanoparticle/polyamide thin-film nanocomposite membranes for salts/organics separation. Journal of Membrane Science, 548, 559-571. doi:10.1016/j.memsci.2017.11.057 es_ES
dc.description.references Wang, C., Li, Z., Chen, J., Zhong, Y., Yin, Y., Cao, L., & Wu, H. (2018). Zwitterionic functionalized «cage-like» porous organic frameworks for nanofiltration membrane with high efficiency water transport channels and anti-fouling property. Journal of Membrane Science, 548, 194-202. doi:10.1016/j.memsci.2017.11.013 es_ES
dc.description.references Ou, H., Cheng, T., Zhang, Y., Liu, J., Ding, Y., Zhen, J., … Shi, L. (2018). Surface-adaptive zwitterionic nanoparticles for prolonged blood circulation time and enhanced cellular uptake in tumor cells. Acta Biomaterialia, 65, 339-348. doi:10.1016/j.actbio.2017.10.034 es_ES
dc.description.references Guo, S., Jańczewski, D., Zhu, X., Quintana, R., He, T., & Neoh, K. G. (2015). Surface charge control for zwitterionic polymer brushes: Tailoring surface properties to antifouling applications. Journal of Colloid and Interface Science, 452, 43-53. doi:10.1016/j.jcis.2015.04.013 es_ES
dc.description.references Izquierdo-Barba, I., Sánchez-Salcedo, S., Colilla, M., Feito, M. J., Ramírez-Santillán, C., Portolés, M. T., & Vallet-Regí, M. (2011). Inhibition of bacterial adhesion on biocompatible zwitterionic SBA-15 mesoporous materials. Acta Biomaterialia, 7(7), 2977-2985. doi:10.1016/j.actbio.2011.03.005 es_ES
dc.description.references Schepelina, O., & Zharov, I. (2007). PNIPAAM-Modified Nanoporous Colloidal Films with Positive and Negative Temperature Gating. Langmuir, 23(25), 12704-12709. doi:10.1021/la702008j es_ES
dc.description.references Tu, H., Hong, L., Anthony, S. M., Braun, P. V., & Granick, S. (2007). Brush-Sheathed Particles Diffusing at Brush-Coated Surfaces in the Thermally Responsive PNIPAAm System. Langmuir, 23(5), 2322-2325. doi:10.1021/la062219i es_ES
dc.description.references Shahbazi, M.-A., Almeida, P. V., Mäkilä, E. M., Kaasalainen, M. H., Salonen, J. J., Hirvonen, J. T., & Santos, H. A. (2014). Augmented cellular trafficking and endosomal escape of porous silicon nanoparticles via zwitterionic bilayer polymer surface engineering. Biomaterials, 35(26), 7488-7500. doi:10.1016/j.biomaterials.2014.05.020 es_ES
dc.description.references Zhu, J., Zhao, X., & He, C. (2015). Zwitterionic SiO2 nanoparticles as novel additives to improve the antifouling properties of PVDF membranes. RSC Advances, 5(66), 53653-53659. doi:10.1039/c5ra05571g es_ES
dc.description.references Dong, Z., Mao, J., Wang, D., Yang, M., Wang, W., Bo, S., & Ji, X. (2013). Tunable Dual-Thermoresponsive Phase Behavior of Zwitterionic Polysulfobetaine Copolymers Containing Poly(N,N -dimethylaminoethyl methacrylate)-Grafted Silica Nanoparticles in Aqueous Solution. Macromolecular Chemistry and Physics, 215(1), 111-120. doi:10.1002/macp.201300552 es_ES
dc.description.references Zhang, L., & Sun, Y. (2018). Poly(carboxybetaine methacrylate)-grafted silica nanoparticle: A novel carrier for enzyme immobilization. Biochemical Engineering Journal, 132, 122-129. doi:10.1016/j.bej.2018.01.013 es_ES
dc.description.references Huang, G., Xiong, Z., Qin, H., Zhu, J., Sun, Z., Zhang, Y., … Zou, H. (2014). Synthesis of zwitterionic polymer brushes hybrid silica nanoparticles via controlled polymerization for highly efficient enrichment of glycopeptides. Analytica Chimica Acta, 809, 61-68. doi:10.1016/j.aca.2013.11.049 es_ES
dc.description.references Teng, I.-T., Chang, Y.-J., Wang, L.-S., Lu, H.-Y., Wu, L.-C., Yang, C.-M., … Ho, J. A. (2013). Phospholipid-functionalized mesoporous silica nanocarriers for selective photodynamic therapy of cancer. Biomaterials, 34(30), 7462-7470. doi:10.1016/j.biomaterials.2013.06.001 es_ES
dc.description.references Sun, J.-T., Yu, Z.-Q., Hong, C.-Y., & Pan, C.-Y. (2012). Biocompatible Zwitterionic Sulfobetaine Copolymer-Coated Mesoporous Silica Nanoparticles for Temperature-Responsive Drug Release. Macromolecular Rapid Communications, 33(9), 811-818. doi:10.1002/marc.201100876 es_ES
dc.description.references Chen, C.-Y., & Wang, H.-L. (2014). Dual Thermo- and pH-Responsive Zwitterionic Sulfobataine Copolymers for Oral Delivery System. Macromolecular Rapid Communications, 35(17), 1534-1540. doi:10.1002/marc.201400161 es_ES
dc.description.references Khatoon, S., Han, H. S., Lee, M., Lee, H., Jung, D.-W., Thambi, T., … Park, J. H. (2016). Zwitterionic mesoporous nanoparticles with a bioresponsive gatekeeper for cancer therapy. Acta Biomaterialia, 40, 282-292. doi:10.1016/j.actbio.2016.04.011 es_ES
dc.description.references Sanchez-Salcedo, S., Vallet-Regí, M., Shahin, S. A., Glackin, C. A., & Zink, J. I. (2018). Mesoporous core-shell silica nanoparticles with anti-fouling properties for ovarian cancer therapy. Chemical Engineering Journal, 340, 114-124. doi:10.1016/j.cej.2017.12.116 es_ES
dc.description.references Suzuki, H., Murou, M., Kitano, H., Ohno, K., & Saruwatari, Y. (2011). Silica particles coated with zwitterionic polymer brush: Formation of colloidal crystals and anti-biofouling properties in aqueous medium. Colloids and Surfaces B: Biointerfaces, 84(1), 111-116. doi:10.1016/j.colsurfb.2010.12.023 es_ES
dc.description.references Tarn, D., Xue, M., & Zink, J. I. (2013). pH-Responsive Dual Cargo Delivery from Mesoporous Silica Nanoparticles with a Metal-Latched Nanogate. Inorganic Chemistry, 52(4), 2044-2049. doi:10.1021/ic3024265 es_ES
dc.description.references Croissant, J., & Zink, J. I. (2012). Nanovalve-Controlled Cargo Release Activated by Plasmonic Heating. Journal of the American Chemical Society, 134(18), 7628-7631. doi:10.1021/ja301880x es_ES
dc.description.references Trébosc, J., Wiench, J. W., Huh, S., Lin, V. S.-Y., & Pruski, M. (2005). Solid-State NMR Study of MCM-41-type Mesoporous Silica Nanoparticles. Journal of the American Chemical Society, 127(9), 3057-3068. doi:10.1021/ja043567e es_ES
dc.description.references Jhan, Y.-Y., & Tsay, R.-Y. (2014). Salt effects on the hydration behavior of zwitterionic poly(sulfobetaine methacrylate) aqueous solutions. Journal of the Taiwan Institute of Chemical Engineers, 45(6), 3139-3145. doi:10.1016/j.jtice.2014.08.022 es_ES
dc.description.references Tooney, N. M., Mosesson, M. W., Amrani, D. L., Hainfeld, J. F., & Wall, J. S. (1983). Solution and surface effects on plasma fibronectin structure. Journal of Cell Biology, 97(6), 1686-1692. doi:10.1083/jcb.97.6.1686 es_ES
dc.description.references Barbosa, L. R. S., Ortore, M. G., Spinozzi, F., Mariani, P., Bernstorff, S., & Itri, R. (2010). The Importance of Protein-Protein Interactions on the pH-Induced Conformational Changes of Bovine Serum Albumin: A Small-Angle X-Ray Scattering Study. Biophysical Journal, 98(1), 147-157. doi:10.1016/j.bpj.2009.09.056 es_ES
dc.description.references Webster, T. J. (2012). Nanomedicine. doi:10.1533/9780857096449 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem