- -

Towards a Persuasive Recommender for Bike Sharing Systems: A Defeasible Argumentation Approach

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Towards a Persuasive Recommender for Bike Sharing Systems: A Defeasible Argumentation Approach

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Diez-Alba, Carlos es_ES
dc.contributor.author Palanca Cámara, Javier es_ES
dc.contributor.author Sanchez-Anguix, Víctor es_ES
dc.contributor.author Heras, Stella es_ES
dc.contributor.author Giret Boggino, Adriana Susana es_ES
dc.contributor.author Julian Inglada, Vicente Javier es_ES
dc.date.accessioned 2020-12-01T04:31:51Z
dc.date.available 2020-12-01T04:31:51Z
dc.date.issued 2019-02-02 es_ES
dc.identifier.uri http://hdl.handle.net/10251/156095
dc.description.abstract [EN] This work proposes a persuasion model based on argumentation theory and users' characteristics for improving the use of resources in bike sharing systems, fostering the use of the bicycles and thus contributing to greater energy sustainability by reducing the use of carbon-based fuels. More specifically, it aims to achieve a balanced network of pick-up and drop-off stations in urban areas with the help of the users, thus reducing the dedicated management trucks that redistribute bikes among stations. The proposal aims to persuade users to choose different routes from the shortest route between a start and an end location. This persuasion is carried out when it is not possible to park the bike in the desired station due to the lack of parking slots, or when the user is highly influenceable. Differently to other works, instead of employing a single criteria to recommend alternative stations, the proposed system can incorporate a variety of criteria. This result is achieved by providing a defeasible logic-based persuasion engine that is capable of aggregating the results from multiple recommendation rules. The proposed framework is showcased with an example scenario of a bike sharing system. es_ES
dc.description.sponsorship This work was supported by the projects TIN2015-65515-C4-1-R and TIN2017-89156-R of the Spanish government, and by the grant program for the recruitment of doctors for the Spanish system of science and technology (PAID-10-14) of the Universitat Politècnica de València. es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Energies es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Cyber-physical systems es_ES
dc.subject Smart systems es_ES
dc.subject Artificial intelligence es_ES
dc.subject Bike sharing system es_ES
dc.subject.classification LENGUAJES Y SISTEMAS INFORMATICOS es_ES
dc.subject.classification ESTADISTICA E INVESTIGACION OPERATIVA es_ES
dc.title Towards a Persuasive Recommender for Bike Sharing Systems: A Defeasible Argumentation Approach es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/en12040662 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UPV//PAID-10-14/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//TIN2015-65515-C4-1-R/ES/ARQUITECTURA PERSUASIVA PARA EL USO SOSTENIBLE E INTELIGENTE DE VEHICULOS EN FLOTAS URBANAS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/TIN2017-89156-R/ES/AGENTES INTELIGENTES PARA ASESORAR EN PRIVACIDAD EN REDES SOCIALES/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Estadística e Investigación Operativa Aplicadas y Calidad - Departament d'Estadística i Investigació Operativa Aplicades i Qualitat es_ES
dc.description.bibliographicCitation Diez-Alba, C.; Palanca Cámara, J.; Sanchez-Anguix, V.; Heras, S.; Giret Boggino, AS.; Julian Inglada, VJ. (2019). Towards a Persuasive Recommender for Bike Sharing Systems: A Defeasible Argumentation Approach. Energies. 12(4):1-19. https://doi.org/10.3390/en12040662 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/en12040662 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 19 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 12 es_ES
dc.description.issue 4 es_ES
dc.identifier.eissn 1996-1073 es_ES
dc.relation.pasarela S\378595 es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder Universitat Politècnica de València es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Erdoğan, G., Laporte, G., & Wolfler Calvo, R. (2014). The static bicycle relocation problem with demand intervals. European Journal of Operational Research, 238(2), 451-457. doi:10.1016/j.ejor.2014.04.013 es_ES
dc.description.references Alvarez-Valdes, R., Belenguer, J. M., Benavent, E., Bermudez, J. D., Muñoz, F., Vercher, E., & Verdejo, F. (2016). Optimizing the level of service quality of a bike-sharing system. Omega, 62, 163-175. doi:10.1016/j.omega.2015.09.007 es_ES
dc.description.references Schuijbroek, J., Hampshire, R. C., & van Hoeve, W.-J. (2017). Inventory rebalancing and vehicle routing in bike sharing systems. European Journal of Operational Research, 257(3), 992-1004. doi:10.1016/j.ejor.2016.08.029 es_ES
dc.description.references Li, L., & Shan, M. (2016). Bidirectional Incentive Model for Bicycle Redistribution of a Bicycle Sharing System during Rush Hour. Sustainability, 8(12), 1299. doi:10.3390/su8121299 es_ES
dc.description.references Anagnostopoulou, E., Bothos, E., Magoutas, B., Schrammel, J., & Mentzas, G. (2018). Persuasive Technologies for Sustainable Mobility: State of the Art and Emerging Trends. Sustainability, 10(7), 2128. doi:10.3390/su10072128 es_ES
dc.description.references Galbrun, E., Pelechrinis, K., & Terzi, E. (2016). Urban navigation beyond shortest route: The case of safe paths. Information Systems, 57, 160-171. doi:10.1016/j.is.2015.10.005 es_ES
dc.description.references Ferrara, J. (2013). Games for Persuasion: Argumentation, Procedurality, and the Lie of Gamification. Games and Culture, 8(4), 289-304. doi:10.1177/1555412013496891 es_ES
dc.description.references Fei, X., Shah, N., Verba, N., Chao, K.-M., Sanchez-Anguix, V., Lewandowski, J., … Usman, Z. (2019). CPS data streams analytics based on machine learning for Cloud and Fog Computing: A survey. Future Generation Computer Systems, 90, 435-450. doi:10.1016/j.future.2018.06.042 es_ES
dc.description.references Faed, A., Hussain, O. K., & Chang, E. (2013). A methodology to map customer complaints and measure customer satisfaction and loyalty. Service Oriented Computing and Applications, 8(1), 33-53. doi:10.1007/s11761-013-0142-6 es_ES
dc.description.references Xu, W., Li, Z., Cheng, C., & Zheng, T. (2012). Data mining for unemployment rate prediction using search engine query data. Service Oriented Computing and Applications, 7(1), 33-42. doi:10.1007/s11761-012-0122-2 es_ES
dc.description.references GARCÍA, A. J., & SIMARI, G. R. (2004). Defeasible logic programming: an argumentative approach. Theory and Practice of Logic Programming, 4(1+2), 95-138. doi:10.1017/s1471068403001674 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem