- -

The First Study on the Reactivity of Water Vapor in Metal-Organic Frameworks with Platinum Nanocrystals

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

The First Study on the Reactivity of Water Vapor in Metal-Organic Frameworks with Platinum Nanocrystals

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Ogiwara, Naoki es_ES
dc.contributor.author Kobayashi, Hirokazu es_ES
dc.contributor.author Concepción Heydorn, Patricia es_ES
dc.contributor.author Rey Garcia, Fernando es_ES
dc.contributor.author Kitagawa, Hiroshi es_ES
dc.date.accessioned 2020-12-01T04:32:00Z
dc.date.available 2020-12-01T04:32:00Z
dc.date.issued 2019-08-19 es_ES
dc.identifier.issn 1433-7851 es_ES
dc.identifier.uri http://hdl.handle.net/10251/156098
dc.description.abstract [EN] We first studied the reactivity of H2O vapor in metal-organic frameworks (MOFs) with Pt nanocrystals (NCs) through the water-gas shift (WGS) reaction. A water-stable MOF, UiO-66, serves as a highly effective support material for the WGS reaction compared with ZrO2. The origin of the high catalytic performance was investigated using in situ IR spectroscopy. In addition, from a comparison of the catalytic activities of Pt on UiO-66, where Pt NCs are located on the surface of UiO-66 and Pt@UiO-66, where Pt NCs are coated with UiO-66, we found that the competitive effects of H2O condensation and diffusion in the UiO-66 play important roles in the catalytic activity of Pt NCs. A thinner UiO-66 coating further enhanced the WGS reaction activity of Pt NCs by minimizing the negative effect of slow H2O diffusion in UiO-66. es_ES
dc.description.sponsorship This work was supported by JST PRESTO (No. JPMJPR1514), JSPS Grants-in-Aid for Scientific Research (B) (No. 17750056), JSPS Research Fellow (No. 17J10099) and Spanish Government-MINECO through "Severo Ochoa" Excellence Programme (SEV-2016-0683). The synchrotron radiation experiments were performed at the BL14B2 of SPring-8 with the approval of JASRI (Proposal No. 2018A1753). es_ES
dc.language Inglés es_ES
dc.publisher John Wiley & Sons es_ES
dc.relation.ispartof Angewandte Chemie International Edition es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Heterogeneous catalysts es_ES
dc.subject Platinum nanocrystals es_ES
dc.subject Metal-organic frameworks es_ES
dc.subject Water es_ES
dc.subject Water-gas shift reaction es_ES
dc.title The First Study on the Reactivity of Water Vapor in Metal-Organic Frameworks with Platinum Nanocrystals es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1002/anie.201905667 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//SEV-2016-0683/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/JSPS//17750056/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/JSPS//17J10099/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/JST//JPMJPR1514/ es_ES
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química es_ES
dc.description.bibliographicCitation Ogiwara, N.; Kobayashi, H.; Concepción Heydorn, P.; Rey Garcia, F.; Kitagawa, H. (2019). The First Study on the Reactivity of Water Vapor in Metal-Organic Frameworks with Platinum Nanocrystals. Angewandte Chemie International Edition. 58(34):11731-11736. https://doi.org/10.1002/anie.201905667 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://doi.org/10.1002/anie.201905667 es_ES
dc.description.upvformatpinicio 11731 es_ES
dc.description.upvformatpfin 11736 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 58 es_ES
dc.description.issue 34 es_ES
dc.identifier.pmid 31267626 es_ES
dc.relation.pasarela S\410688 es_ES
dc.contributor.funder Japan Science and Technology Agency es_ES
dc.contributor.funder Japan Society for the Promotion of Science es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Burtch, N. C., Jasuja, H., & Walton, K. S. (2014). Water Stability and Adsorption in Metal–Organic Frameworks. Chemical Reviews, 114(20), 10575-10612. doi:10.1021/cr5002589 es_ES
dc.description.references O’Nolan, D., Kumar, A., & Zaworotko, M. J. (2017). Water Vapor Sorption in Hybrid Pillared Square Grid Materials. Journal of the American Chemical Society, 139(25), 8508-8513. doi:10.1021/jacs.7b01682 es_ES
dc.description.references De Lange, M. F., Verouden, K. J. F. M., Vlugt, T. J. H., Gascon, J., & Kapteijn, F. (2015). Adsorption-Driven Heat Pumps: The Potential of Metal–Organic Frameworks. Chemical Reviews, 115(22), 12205-12250. doi:10.1021/acs.chemrev.5b00059 es_ES
dc.description.references Rieth, A. J., Yang, S., Wang, E. N., & Dincă, M. (2017). Record Atmospheric Fresh Water Capture and Heat Transfer with a Material Operating at the Water Uptake Reversibility Limit. ACS Central Science, 3(6), 668-672. doi:10.1021/acscentsci.7b00186 es_ES
dc.description.references Kim, H., Yang, S., Rao, S. R., Narayanan, S., Kapustin, E. A., Furukawa, H., … Wang, E. N. (2017). Water harvesting from air with metal-organic frameworks powered by natural sunlight. Science, 356(6336), 430-434. doi:10.1126/science.aam8743 es_ES
dc.description.references Ghosh, S. K., & Bharadwaj, P. K. (2003). Coexistence of Water Dimer and Hexamer Clusters in 3D Metal−Organic Framework Structures of Ce(III) and Pr(III) with Pyridine-2,6-dicarboxylic Acid. Inorganic Chemistry, 42(25), 8250-8254. doi:10.1021/ic034976z es_ES
dc.description.references Taylor, J. M., Mah, R. K., Moudrakovski, I. L., Ratcliffe, C. I., Vaidhyanathan, R., & Shimizu, G. K. H. (2010). Facile Proton Conduction via Ordered Water Molecules in a Phosphonate Metal−Organic Framework. Journal of the American Chemical Society, 132(40), 14055-14057. doi:10.1021/ja107035w es_ES
dc.description.references Grabow, L. C., Gokhale, A. A., Evans, S. T., Dumesic, J. A., & Mavrikakis, M. (2008). Mechanism of the Water Gas Shift Reaction on Pt:  First Principles, Experiments, and Microkinetic Modeling. The Journal of Physical Chemistry C, 112(12), 4608-4617. doi:10.1021/jp7099702 es_ES
dc.description.references Navarro-Jaén, S., Centeno, M. Á., Laguna, O. H., & Odriozola, J. A. (2018). Pt/CePO4 catalysts for the WGS reaction: influence of the water-supplier role of the support on the catalytic performance. Journal of Materials Chemistry A, 6(35), 17001-17010. doi:10.1039/c8ta04603d es_ES
dc.description.references Flaherty, D. W., Yu, W.-Y., Pozun, Z. D., Henkelman, G., & Mullins, C. B. (2011). Mechanism for the water–gas shift reaction on monofunctional platinum and cause of catalyst deactivation. Journal of Catalysis, 282(2), 278-288. doi:10.1016/j.jcat.2011.06.024 es_ES
dc.description.references Rösler, C., Dissegna, S., Rechac, V. L., Kauer, M., Guo, P., Turner, S., … Fischer, R. A. (2017). Encapsulation of Bimetallic Metal Nanoparticles into Robust Zirconium-Based Metal-Organic Frameworks: Evaluation of the Catalytic Potential for Size-Selective Hydrogenation. Chemistry - A European Journal, 23(15), 3583-3594. doi:10.1002/chem.201603984 es_ES
dc.description.references Dulaurent, O., & Bianchi, D. (2000). Adsorption isobars for CO on a Pt/Al2O3 catalyst at high temperatures using FTIR spectroscopy: isosteric heat of adsorption and adsorption model. Applied Catalysis A: General, 196(2), 271-280. doi:10.1016/s0926-860x(99)00472-x es_ES
dc.description.references Garnier, A., Sall, S., Garin, F., Chetcuti, M. J., & Petit, C. (2013). Site effects in the adsorption of carbon monoxide on real 1.8nm Pt nanoparticles: An Infrared investigation in time and temperature. Journal of Molecular Catalysis A: Chemical, 373, 127-134. doi:10.1016/j.molcata.2013.02.029 es_ES
dc.description.references Choi, K. M., Na, K., Somorjai, G. A., & Yaghi, O. M. (2015). Chemical Environment Control and Enhanced Catalytic Performance of Platinum Nanoparticles Embedded in Nanocrystalline Metal–Organic Frameworks. Journal of the American Chemical Society, 137(24), 7810-7816. doi:10.1021/jacs.5b03540 es_ES
dc.description.references Rungtaweevoranit, B., Baek, J., Araujo, J. R., Archanjo, B. S., Choi, K. M., Yaghi, O. M., & Somorjai, G. A. (2016). Copper Nanocrystals Encapsulated in Zr-based Metal–Organic Frameworks for Highly Selective CO2 Hydrogenation to Methanol. Nano Letters, 16(12), 7645-7649. doi:10.1021/acs.nanolett.6b03637 es_ES
dc.description.references Xiao, J., Shang, Q., Xiong, Y., Zhang, Q., Luo, Y., Yu, S., & Jiang, H. (2016). Boosting Photocatalytic Hydrogen Production of a Metal–Organic Framework Decorated with Platinum Nanoparticles: The Platinum Location Matters. Angewandte Chemie International Edition, 55(32), 9389-9393. doi:10.1002/anie.201603990 es_ES
dc.description.references Xiao, J., Shang, Q., Xiong, Y., Zhang, Q., Luo, Y., Yu, S., & Jiang, H. (2016). Boosting Photocatalytic Hydrogen Production of a Metal–Organic Framework Decorated with Platinum Nanoparticles: The Platinum Location Matters. Angewandte Chemie, 128(32), 9535-9539. doi:10.1002/ange.201603990 es_ES
dc.description.references Stallmach, F., Gröger, S., Künzel, V., Kärger, J., Yaghi, O. M., Hesse, M., & Müller, U. (2006). NMR Studies on the Diffusion of Hydrocarbons on the Metal-Organic Framework Material MOF-5. Angewandte Chemie International Edition, 45(13), 2123-2126. doi:10.1002/anie.200502553 es_ES
dc.description.references Stallmach, F., Gröger, S., Künzel, V., Kärger, J., Yaghi, O. M., Hesse, M., & Müller, U. (2006). NMR-Untersuchungen zur Diffusion von Kohlenwasserstoffen im metall-organischen Netzwerk MOF-5. Angewandte Chemie, 118(13), 2177-2181. doi:10.1002/ange.200502553 es_ES
dc.description.references Salles, F., Kolokolov, D. I., Jobic, H., Maurin, G., Llewellyn, P. L., Devic, T., … Ferey, G. (2009). Adsorption and Diffusion of H2 in the MOF Type Systems MIL-47(V) and MIL-53(Cr): A Combination of Microcalorimetry and QENS Experiments with Molecular Simulations. The Journal of Physical Chemistry C, 113(18), 7802-7812. doi:10.1021/jp811190g es_ES
dc.description.references Yang, Q., Jobic, H., Salles, F., Kolokolov, D., Guillerm, V., Serre, C., & Maurin, G. (2011). Probing the Dynamics of CO2 and CH4 within the Porous Zirconium Terephthalate UiO-66(Zr): A Synergic Combination of Neutron Scattering Measurements and Molecular Simulations. Chemistry - A European Journal, 17(32), 8882-8889. doi:10.1002/chem.201003596 es_ES
dc.description.references Lu, G., Li, S., Guo, Z., Farha, O. K., Hauser, B. G., Qi, X., … Huo, F. (2012). Imparting functionality to a metal–organic framework material by controlled nanoparticle encapsulation. Nature Chemistry, 4(4), 310-316. doi:10.1038/nchem.1272 es_ES
dc.description.references Na, K., Choi, K. M., Yaghi, O. M., & Somorjai, G. A. (2014). Metal Nanocrystals Embedded in Single Nanocrystals of MOFs Give Unusual Selectivity as Heterogeneous Catalysts. Nano Letters, 14(10), 5979-5983. doi:10.1021/nl503007h es_ES
dc.description.references Hu, P., Zhuang, J., Chou, L.-Y., Lee, H. K., Ling, X. Y., Chuang, Y.-C., & Tsung, C.-K. (2014). Surfactant-Directed Atomic to Mesoscale Alignment: Metal Nanocrystals Encased Individually in Single-Crystalline Porous Nanostructures. Journal of the American Chemical Society, 136(30), 10561-10564. doi:10.1021/ja5048522 es_ES
dc.description.references Choi, K. M., Kim, D., Rungtaweevoranit, B., Trickett, C. A., Barmanbek, J. T. D., Alshammari, A. S., … Yaghi, O. M. (2016). Plasmon-Enhanced Photocatalytic CO2 Conversion within Metal–Organic Frameworks under Visible Light. Journal of the American Chemical Society, 139(1), 356-362. doi:10.1021/jacs.6b11027 es_ES
dc.description.references Bruix, A., Rodriguez, J. A., Ramírez, P. J., Senanayake, S. D., Evans, J., Park, J. B., … Illas, F. (2012). A New Type of Strong Metal–Support Interaction and the Production of H2 through the Transformation of Water on Pt/CeO2(111) and Pt/CeOx/TiO2(110) Catalysts. Journal of the American Chemical Society, 134(21), 8968-8974. doi:10.1021/ja302070k es_ES
dc.description.references Zhai, Y., Pierre, D., Si, R., Deng, W., Ferrin, P., Nilekar, A. U., … Flytzani-Stephanopoulos, M. (2010). Alkali-Stabilized Pt-OHx Species Catalyze Low-Temperature Water-Gas Shift Reactions. Science, 329(5999), 1633-1636. doi:10.1126/science.1192449 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem