- -

Computing the Partial Correlation of ICA Models for Non-Gaussian Graph Signal Processing

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Computing the Partial Correlation of ICA Models for Non-Gaussian Graph Signal Processing

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Belda, Jordi es_ES
dc.contributor.author Vergara Domínguez, Luís es_ES
dc.contributor.author Safont Armero, Gonzalo es_ES
dc.contributor.author Salazar Afanador, Addisson es_ES
dc.date.accessioned 2020-12-01T04:32:21Z
dc.date.available 2020-12-01T04:32:21Z
dc.date.issued 2019-01 es_ES
dc.identifier.issn 1099-4300 es_ES
dc.identifier.uri http://hdl.handle.net/10251/156105
dc.description.abstract [EN] Conventional partial correlation coefficients (PCC) were extended to the non-Gaussian case, in particular to independent component analysis (ICA) models of the observed multivariate samples. Thus, the usual methods that define the pairwise connections of a graph from the precision matrix were correspondingly extended. The basic concept involved replacing the implicit linear estimation of conventional PCC with a nonlinear estimation (conditional mean) assuming ICA. Thus, it is better eliminated the correlation between a given pair of nodes induced by the rest of nodes, and hence the specific connectivity weights can be better estimated. Some synthetic and real data examples illustrate the approach in a graph signal processing context. es_ES
dc.description.sponsorship This research was funded by Spanish Administration and European Union under grants TEC2014-58438-R and TEC2017-84743-P. es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Entropy es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Partial correlation es_ES
dc.subject Independent component analysis es_ES
dc.subject Graph signal processing es_ES
dc.subject.classification TEORIA DE LA SEÑAL Y COMUNICACIONES es_ES
dc.title Computing the Partial Correlation of ICA Models for Non-Gaussian Graph Signal Processing es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/e21010022 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//TEC2014-58438-R/ES/PROCESADO DE SEÑAL SOBRE GRAFOS PARA SISTEMAS CLASIFICADORES: APLICACION EN SALUD, ENERGIA Y SEGURIDAD/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/TEC2017-84743-P/ES/METODOS INFORMADOS PARA LA SINTESIS DE SEÑALES/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Telecomunicación y Aplicaciones Multimedia - Institut Universitari de Telecomunicacions i Aplicacions Multimèdia es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions es_ES
dc.description.bibliographicCitation Belda, J.; Vergara Domínguez, L.; Safont Armero, G.; Salazar Afanador, A. (2019). Computing the Partial Correlation of ICA Models for Non-Gaussian Graph Signal Processing. Entropy. 21(1):1-16. https://doi.org/10.3390/e21010022 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/e21010022 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 16 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 21 es_ES
dc.description.issue 1 es_ES
dc.relation.pasarela S\376290 es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder Ministerio de Economía y Empresa es_ES
dc.description.references Baba, K., Shibata, R., & Sibuya, M. (2004). PARTIAL CORRELATION AND CONDITIONAL CORRELATION AS MEASURES OF CONDITIONAL INDEPENDENCE. Australian <html_ent glyph=«@amp;» ascii=«&amp;»/> New Zealand Journal of Statistics, 46(4), 657-664. doi:10.1111/j.1467-842x.2004.00360.x es_ES
dc.description.references Shuman, D. I., Narang, S. K., Frossard, P., Ortega, A., & Vandergheynst, P. (2013). The emerging field of signal processing on graphs: Extending high-dimensional data analysis to networks and other irregular domains. IEEE Signal Processing Magazine, 30(3), 83-98. doi:10.1109/msp.2012.2235192 es_ES
dc.description.references Sandryhaila, A., & Moura, J. M. F. (2013). Discrete Signal Processing on Graphs. IEEE Transactions on Signal Processing, 61(7), 1644-1656. doi:10.1109/tsp.2013.2238935 es_ES
dc.description.references Ortega, A., Frossard, P., Kovacevic, J., Moura, J. M. F., & Vandergheynst, P. (2018). Graph Signal Processing: Overview, Challenges, and Applications. Proceedings of the IEEE, 106(5), 808-828. doi:10.1109/jproc.2018.2820126 es_ES
dc.description.references Mazumder, R., & Hastie, T. (2012). The graphical lasso: New insights and alternatives. Electronic Journal of Statistics, 6(0), 2125-2149. doi:10.1214/12-ejs740 es_ES
dc.description.references Chen, X., Xu, M., & Wu, W. B. (2013). Covariance and precision matrix estimation for high-dimensional time series. The Annals of Statistics, 41(6), 2994-3021. doi:10.1214/13-aos1182 es_ES
dc.description.references Friedman, J., Hastie, T., & Tibshirani, R. (2007). Sparse inverse covariance estimation with the graphical lasso. Biostatistics, 9(3), 432-441. doi:10.1093/biostatistics/kxm045 es_ES
dc.description.references Peng, J., Wang, P., Zhou, N., & Zhu, J. (2009). Partial Correlation Estimation by Joint Sparse Regression Models. Journal of the American Statistical Association, 104(486), 735-746. doi:10.1198/jasa.2009.0126 es_ES
dc.description.references Belda, J., Vergara, L., Salazar, A., & Safont, G. (2018). Estimating the Laplacian matrix of Gaussian mixtures for signal processing on graphs. Signal Processing, 148, 241-249. doi:10.1016/j.sigpro.2018.02.017 es_ES
dc.description.references Hyvärinen, A., & Oja, E. (2000). Independent component analysis: algorithms and applications. Neural Networks, 13(4-5), 411-430. doi:10.1016/s0893-6080(00)00026-5 es_ES
dc.description.references Chai, R., Naik, G. R., Nguyen, T. N., Ling, S. H., Tran, Y., Craig, A., & Nguyen, H. T. (2017). Driver Fatigue Classification With Independent Component by Entropy Rate Bound Minimization Analysis in an EEG-Based System. IEEE Journal of Biomedical and Health Informatics, 21(3), 715-724. doi:10.1109/jbhi.2016.2532354 es_ES
dc.description.references Liu, H., Liu, S., Huang, T., Zhang, Z., Hu, Y., & Zhang, T. (2016). Infrared spectrum blind deconvolution algorithm via learned dictionaries and sparse representation. Applied Optics, 55(10), 2813. doi:10.1364/ao.55.002813 es_ES
dc.description.references Naik, G. R., Selvan, S. E., & Nguyen, H. T. (2016). Single-Channel EMG Classification With Ensemble-Empirical-Mode-Decomposition-Based ICA for Diagnosing Neuromuscular Disorders. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 24(7), 734-743. doi:10.1109/tnsre.2015.2454503 es_ES
dc.description.references Guo, Y., Huang, S., Li, Y., & Naik, G. R. (2013). Edge Effect Elimination in Single-Mixture Blind Source Separation. Circuits, Systems, and Signal Processing, 32(5), 2317-2334. doi:10.1007/s00034-013-9556-9 es_ES
dc.description.references Chi, Y. (2016). Guaranteed Blind Sparse Spikes Deconvolution via Lifting and Convex Optimization. IEEE Journal of Selected Topics in Signal Processing, 10(4), 782-794. doi:10.1109/jstsp.2016.2543462 es_ES
dc.description.references Pendharkar, G., Naik, G. R., & Nguyen, H. T. (2014). Using Blind Source Separation on accelerometry data to analyze and distinguish the toe walking gait from normal gait in ITW children. Biomedical Signal Processing and Control, 13, 41-49. doi:10.1016/j.bspc.2014.02.009 es_ES
dc.description.references Wang, L., & Chi, Y. (2016). Blind Deconvolution From Multiple Sparse Inputs. IEEE Signal Processing Letters, 23(10), 1384-1388. doi:10.1109/lsp.2016.2599104 es_ES
dc.description.references Safont, G., Salazar, A., Vergara, L., Gomez, E., & Villanueva, V. (2018). Probabilistic Distance for Mixtures of Independent Component Analyzers. IEEE Transactions on Neural Networks and Learning Systems, 29(4), 1161-1173. doi:10.1109/tnnls.2017.2663843 es_ES
dc.description.references Safont, G., Salazar, A., Rodriguez, A., & Vergara, L. (2014). On Recovering Missing Ground Penetrating Radar Traces by Statistical Interpolation Methods. Remote Sensing, 6(8), 7546-7565. doi:10.3390/rs6087546 es_ES
dc.description.references Vergara, L., & Bernabeu, P. (2001). Simple approach to nonlinear prediction. Electronics Letters, 37(14), 926. doi:10.1049/el:20010616 es_ES
dc.description.references Ertuğrul Çelebi, M. (1997). General formula for conditional mean using higher order statistics. Electronics Letters, 33(25), 2097. doi:10.1049/el:19971432 es_ES
dc.description.references Lee, T.-W., Girolami, M., & Sejnowski, T. J. (1999). Independent Component Analysis Using an Extended Infomax Algorithm for Mixed Subgaussian and Supergaussian Sources. Neural Computation, 11(2), 417-441. doi:10.1162/089976699300016719 es_ES
dc.description.references Cardoso, J. F., & Souloumiac, A. (1993). Blind beamforming for non-gaussian signals. IEE Proceedings F Radar and Signal Processing, 140(6), 362. doi:10.1049/ip-f-2.1993.0054 es_ES
dc.description.references Hyvärinen, A., & Oja, E. (1997). A Fast Fixed-Point Algorithm for Independent Component Analysis. Neural Computation, 9(7), 1483-1492. doi:10.1162/neco.1997.9.7.1483 es_ES
dc.description.references Salazar, A., Vergara, L., & Miralles, R. (2010). On including sequential dependence in ICA mixture models. Signal Processing, 90(7), 2314-2318. doi:10.1016/j.sigpro.2010.02.010 es_ES
dc.description.references Lang, E. W., Tomé, A. M., Keck, I. R., Górriz-Sáez, J. M., & Puntonet, C. G. (2012). Brain Connectivity Analysis: A Short Survey. Computational Intelligence and Neuroscience, 2012, 1-21. doi:10.1155/2012/412512 es_ES
dc.description.references Fiedler, M. (1973). Algebraic connectivity of graphs. Czechoslovak Mathematical Journal, 23(2), 298-305. doi:10.21136/cmj.1973.101168 es_ES
dc.description.references Merris, R. (1994). Laplacian matrices of graphs: a survey. Linear Algebra and its Applications, 197-198, 143-176. doi:10.1016/0024-3795(94)90486-3 es_ES
dc.description.references Dong, X., Thanou, D., Frossard, P., & Vandergheynst, P. (2016). Learning Laplacian Matrix in Smooth Graph Signal Representations. IEEE Transactions on Signal Processing, 64(23), 6160-6173. doi:10.1109/tsp.2016.2602809 es_ES
dc.description.references Moragues, J., Vergara, L., & Gosalbez, J. (2011). Generalized Matched Subspace Filter for Nonindependent Noise Based on ICA. IEEE Transactions on Signal Processing, 59(7), 3430-3434. doi:10.1109/tsp.2011.2141668 es_ES
dc.description.references Egilmez, H. E., Pavez, E., & Ortega, A. (2017). Graph Learning From Data Under Laplacian and Structural Constraints. IEEE Journal of Selected Topics in Signal Processing, 11(6), 825-841. doi:10.1109/jstsp.2017.2726975 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem